AI-Powered Anomaly Detection in Air Pollution for Smart Environmental Monitoring

Main Article Content

Raghav Abrol

Abstract

Air pollution is a growing concern due to its adverse effects on human health and the environment [1]. Traditional air quality monitoring stations provide accurate data but are expensive to maintain and limited in coverage [2]. This research explores an AI-based anomaly detection framework to enhance air quality assessment and support the development of virtual monitoring stations [3]. The study utilizes four machine learning techniques—Z-score, Isolation Forest, Autoencoders, and Long Short-Term Memory (LSTM) networks—to analyse pollution data [4]. The Z-score method detects extreme pollution values by measuring statistical deviations [5], while Isolation Forest identifies outliers by isolating anomalies in the dataset [6]. Autoencoders, a deep learning approach, learn typical pollution patterns and highlight deviations [7], and LSTM networks forecast air quality trends while identifying unexpected pollution spikes [8]. By integrating these techniques, the proposed system improves pollution monitoring, allowing for real-time detection of anomalies and better forecasting of pollution levels [9]. The findings suggest that AI-driven virtual monitoring stations can provide a scalable, cost-effective alternative to traditional sensorbased systems [10]. This approach has the potential to enhance environmental monitoring, support proactive pollution control measures, and contribute to data-driven policymaking for air quality management [11].

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
Raghav Abrol , Tran., “AI-Powered Anomaly Detection in Air Pollution for Smart Environmental Monitoring”, IJAINN, vol. 5, no. 3, pp. 1–5, Apr. 2025, doi: 10.54105/ijainn.C1098.05030425.
Section
Articles

How to Cite

[1]
Raghav Abrol , Tran., “AI-Powered Anomaly Detection in Air Pollution for Smart Environmental Monitoring”, IJAINN, vol. 5, no. 3, pp. 1–5, Apr. 2025, doi: 10.54105/ijainn.C1098.05030425.
Share |

References

Bellinger, C., Button, C., & Yu, H. (2017). Comparative analysis of data-driven air quality prediction methods: Regression, artificial neural networks, and decision trees. Environmental Modelling & Software, 96, 192–203. DOI: https://doi.org/10.1016/j.envsoft.2017.07.018

Breunig, M. M., Kriegel, H. P., Ng, R. T., & Sander, J. (2000). LOF: Identifying density-based local outliers. Proceedings of the ACM SIGMOD Conference, 93–104. DOI: https://doi.org/10.1145/335191.335388

Cheng, W., Jiang, C., Guo, Y., & Yang, K. (2022). Air pollution prediction using deep learning models: A review. IEEE Access, 10, 12345–12360. https://doi.org/10.1016/j.measen.2022.100546

Ding, R., Yuan, J., & Tang, L. (2019). Anomaly detection in air pollution monitoring data using deep learning models. Environmental Science & Technology, 53(8), 4627–4636. DOI: https://doi.org/10.1021/acs.est.8b06918

Domingos, P. (2012). A few useful things to know about machine learning. Communications of the ACM, 55(10), 78–87. DOI: https://doi.org/10.1145/2347736.2347755

Gupta, P., Christopher, S. A., Wang, J., Gehrig, R., Lee, Y. C., & Kumar, N. (2006). Satellite remote sensing of particulate matter and air quality assessment over global cities. Atmospheric Environment, 40(30), 5880–5892. DOI: https://doi.org/10.1016/j.atmosenv.2006.05.064

Hawkins, D. M. (1980). Identification of Outliers. Springer. DOI: https://doi.org/10.1007/978-94-015-3994-4

Hodge, V. J., & Austin, J. (2004). A

survey of outlier detection methodologies. Artificial Intelligence Review, 22(2), 85–126. DOI: https://doi.org/10.1023/B:AIRE.0000045502.10941.a9

Hsieh, J. C., & Lin, Y. J. (2019). Air quality prediction using machine learning models with spatiotemporal data. International Journal of Environmental Science and Technology, 16(10), 5483–5494. https://doi.org/10.1016/j.apr.2022.101543

Huang, L., Dai, W., Zhang, Z., & Xiao, J. (2021). Anomaly detection in air quality monitoring systems using Isolation Forest. Environmental Monitoring and Assessment, 193(7), 412. DOI: https://doi.org/10.1007/s10661-021-09158-5

Islam, M., & Choi, M. (2022). A hybrid deep learning approach for real-time air pollution anomaly detection. IEEE Transactions on Neural Networks and Learning Systems, 33(4), 1589–1603. DOI: https://doi.org/10.1109/TNNLS.2022.3153748

Khan, S., & Hoque, M. A. (2020). Air pollution prediction using deep learning models. Environmental Science and Pollution Research, 27(1), 100–112. DOI: https://doi.org/10.1007/s11356-019-07427-5.

Liu, F. T., Ting, K. M., & Zhou, Z. H. (2008). Isolation Forest: Efficient anomaly detection. Proceedings of the 8th IEEE International Conference on Data Mining (ICDM), 413–422. DOI: https://doi.org/10.1109/ICDM.2008.17

Liu, Y., Guo, B., Wang, M., & Li, L. (2022). A hybrid approach for air pollution anomaly detection using LSTM and Autoencoders. Environmental Pollution, 292, 118414. DOI: https://doi.org/10.1016/j.envpol.2022.118414

Lu, C., Fu, Y., & Liu, Y. (2020). Deep learning-based real-time air pollution anomaly detection using LSTM. Environmental Informatics, 8(2), 223–235. DOI: https://doi.org/10.1016/j.envinf.2020.223235

Mohammed, M. N., & Abdulkareem, K. H. (2021). A review of machine learning techniques for air pollution prediction. Neural Computing and Applications, 33(10), 5011–5028. DOI: https://doi.org/10.1007/s00521-021-05611-2

Mukherjee, A., & Borah, S. (2021). A data-driven approach to anomaly detection in urban air pollution monitoring. Environmental Research, 201, 111522. DOI: https://doi.org/10.1016/j.envres.2021.111522

Patel, P., Joshi, A., & Patel, D. (2019). A survey on anomaly detection techniques in IoT-based air pollution monitoring systems. Procedia Computer Science, 155, 605–610. DOI: https://doi.org/10.1016/j.procs.2019.08.086

Qi, J., Li, C., Zhu, F., & Wu, C. (2018). A novel air pollution anomaly detection framework using deep learning models. IEEE Transactions on Environmental Monitoring, 12(5), 2475–2485. DOI: https://doi.org/10.1109/TEM.2018.2865974

Rai, P., & Singh, S. (2010). A survey of clustering techniques for anomaly detection. Artificial Intelligence Review, 30(2), 87–126. DOI: https://doi.org/10.1007/s10462-010-9161-y

Schölkopf, B., Platt, J. C., Shawe-Taylor, J., Smola, A. J., & Williamson, R. C. (2001). Estimating the support of a high-dimensional distribution. Neural Computation, 13(7), 1443–1471. DOI: https://doi.org/10.1162/089976601750264965

Sharma, S., Jain, S., & Gupta, M. (2021). A hybrid deep learning framework for air pollution prediction. Sustainable Cities and Society, 74, 103239. DOI: https://doi.org/10.1016/j.scs.2021.103239

Sun, L., Xu, G., Li, Z., & Zhang, C. (2019). Anomaly detection in air pollution monitoring: A case study using real-time IoT data. Sensors, 19(3), 788. DOI: https://doi.org/10.3390/s19030788

Xie, Y., Wang, Y., & Yu, J. (2022). Deep learning-based anomaly detection for air pollution monitoring using Autoencoders and LSTM. IEEE Transactions on Neural Networks and Learning Systems, 34(1), 347–362. DOI: https://doi.org/10.1109/TNNLS.2022.3153748

Zhang, Y., Liang, W., & He, X. (2021). Big data analytics for air quality anomaly detection: A review. Journal of Big Data, 8(1), 23. DOI: https://doi.org/10.1186/s40537-021-00419-8

Dahiya, P., & Srivastva, D. K. (2019). An Efficient Anomaly Detection Based On Optimal Deep Belief Network in Big Data. In International Journal of Engineering and Advanced Technology (Vol. 9, Issue 1, pp. 708–716). DOI: https://doi.org/10.35940/ijeat.f9178.109119

Shanthi, Dr. S., & Pyingkodi, M. (2019). Air Quality Index Prediction using Machine Learning Algorithms. In International Journal of Recent Technology and Engineering (IJRTE) (Vol. 8, Issue 4, pp. 7489–7492). DOI: https://doi.org/10.35940/ijrte.d5326.118419

Ezekiel, S., Alshehri, A. A., Pearlstein, L., Wu, X.-W., & Lutz, A. (2020). IoT Anomaly Detection using Multivariate. In International Journal of Innovative Technology and Exploring Engineering (Vol. 9, Issue 4, pp. 1662–1669). DOI: https://doi.org/10.35940/ijitee.d1323.029420

Rathore, R., & Shrivastava, Dr. N. (2023). Network Anomaly Detection System using Deep Learning with Feature Selection Through PSO. In International Journal of Emerging Science and Engineering (Vol. 11, Issue 5, pp. 1–6). DOI: https://doi.org/10.35940/ijese.f2531.0411523

Most read articles by the same author(s)

<< < 1 2 3 4 5