Evaluate the Effects of Gamma Radiation (16 Sv/h), Neutron Radiation (3 Sv/h), and a Mixed Radiation Field on the Structural and Biophysical Properties of Bones

Main Article Content

Dr. Mohamed S. Nasr Eldin
Dr. Ahmed. A Emara
Prof. Dr. Hala M. Ahmed

Abstract

Background: Ionizing radiation, including gamma and neutron radiation, can adversely affect bone structure, mineralization, and tissue integrity. While individual effects of gamma or neutron exposure have been studied, comparative analyses of their isolated and combined impacts on bone’s structural and biophysical properties remain limited. Objective: This study aimed to evaluate the effects of gamma radiation (16 μSv/h), neutron radiation (3 μSv/h), and combined exposure on bone mineral content, collagen synthesis, cytokine levels, biomechanical properties, and histopathological changes in rats. Materials and Methods: Eighty male albino rats were divided into four groups: control (no radiation), gamma-exposed, neutron-exposed, and combined gamma-neutron exposure. Bone calcium was measured using atomic absorption spectrophotometry, and collagen content was quantified via hydroxyproline-based colourimetric assays. Serum interleukin-1β (IL-1β) and tumour necrosis factor-alpha (TNF-α) levels were determined using ELISA. Biomechanical properties of tibia bones, including tensile strength, stiffness, and energy absorption, were assessed through stress-strain analysis and cyclic loading. Skin and mammary tissues were examined histologically using hematoxylin and eosin staining. Results: Radiation exposure reduced calcium and collagen content, with the most pronounced effects observed in neutron and combined radiation groups. TNF-α levels were significantly elevated in irradiated rats, while IL-1β showed a non-significant upward trend, indicating an inflammatory response. Biomechanical analysis revealed reduced bone strength and increased energy dissipation, suggesting microstructural damage. Histological examination confirmed inflammation, necrosis, and impaired regenerative capacity, particularly in the combined radiation group. Conclusion: Gamma and neutron radiation, both individually and in combination, hurt bone mineralisation, collagen synthesis, inflammatory cytokine balance, and biomechanical integrity. These findings underscore the susceptibility of skeletal tissue to ionizing radiation and highlight the importance of protective strategies in clinical, occupational, and spaceflight environments. Future research should explore interventions targeting oxidative stress and inflammation to mitigate radiation-induced musculoskeletal damage.

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
Dr. Mohamed S. Nasr Eldin, Dr. Ahmed. A Emara, and Prof. Dr. Hala M. Ahmed , Trans., “Evaluate the Effects of Gamma Radiation (16 Sv/h), Neutron Radiation (3 Sv/h), and a Mixed Radiation Field on the Structural and Biophysical Properties of Bones”, IJAMST, vol. 5, no. 6, pp. 11–16, Oct. 2025, doi: 10.54105/ijamst.F3051.05061025.
Section
Articles

How to Cite

[1]
Dr. Mohamed S. Nasr Eldin, Dr. Ahmed. A Emara, and Prof. Dr. Hala M. Ahmed , Trans., “Evaluate the Effects of Gamma Radiation (16 Sv/h), Neutron Radiation (3 Sv/h), and a Mixed Radiation Field on the Structural and Biophysical Properties of Bones”, IJAMST, vol. 5, no. 6, pp. 11–16, Oct. 2025, doi: 10.54105/ijamst.F3051.05061025.

References

Karpius, P. J., & Reilly, T. D. (2024). Gamma-ray interactions with matter. In Nondestructive assay of nuclear materials for safeguards and security (pp. 27–41). Springer. https://doi.org/10.1007/978-3-031-58277-6_3

Hall, E. J., & Giaccia, A. J. (2023). Radiobiology for the radiologist (9th ed.). Wolters Kluwer.

Yamano, N., Chiba, S., Inakura, T., & Ishizuka, C. (2024). Effects of correlations in uncertainties of total cross section and elastic angular distribution for a deep penetration of 14-MeV neutrons in Cu. Journal of Nuclear Science and Technology, 61(1), 74–83.

DOI: https://doi.org/10.1080/00223131.2023.2272759.

Swinhoe, M. T., Hutchinson, J. D., & Rinard, P. M. (2024). Neutron interactions with matter. In "Nondestructive Assay of Nuclear Materials for Safeguards and Security" (pp. 307–323). Springer. DOI: https://doi.org/10.1007/978-3-031-58277-6_14.

Crocker, D. B., Hering, T. M., Akkus, O., Oest, M. E., & Rimnac, C. M. (2024). Dose-dependent effects of gamma radiation sterilization on the collagen matrix of human cortical bone allograft and its influence on fatigue crack propagation resistance. Cell and Tissue Banking, 25(3), 735–745. DOI: DOI: https://doi.org/10.1007/s10561-024-10135-2

Kester, N., Allam, N., Neshatian, M., Vaez, M., Hirvonen, L. M., Lam, E., Vitkin, A., & Bozec, L. (2025). Effects of Ionising Radiation on the Biophysical Properties of Bone Collagen PLOS ONE. DOI: https://doi.org/10.1371/journal.pone.0319777

Sauer, K., Zizak, I., Forien, J.-B., Rack, A., Scoppola, E., & Zaslansky, P. (2022). Primary radiation damage in bone evolves via collagen backbone degradation: Implications for structural integrity under X-ray exposure. Nature Communications, 13, 7829. DOI:

https://doi.org/10.1038/s41467-022-34247-z

Wang, Y., Liu, Z., Chen, H., Zhang, B., Li, Q., Zhao, Y., & Li, Z. (2022). Radiation impairments of collagen synthesis and bone matrix quality. Bone, 154, 116225. DOI: https://doi.org/10.1016/j.bone.2021.116225.

Abdel-Halim, S. A., & El-Sayed, M. A. (2020). Determination of calcium in bone ash samples using atomic absorption spectrophotometry and spectrophotometric methods with o-cresolophthalein reagent. Analytical Chemistry Insights, 15, 1177930220966595.

DOI: https://doi.org/10.1177/1177930220966595

Wu, X., Wang, J., & Zhang, Y. (2019). Quantitative analysis of bone collagen and hydroxyproline in decalcified bone samples using colourimetric methods. Journal of Bone and Mineral Research, 34(4), 695–703. DOI: https://doi.org/10.1002/jbmr.3622.

Lee, S. Y., & Kim, H. J. (2020). Methodological approaches for collagen quantification in mineralized tissues: Hydroxyproline assay and related techniques. Analytical Biochemistry, 603, 113806. DOI: https://doi.org/10.1016/j.ab.2020.113806

Zhang, W., Wang, Y., Sun, Y., Zhang, Q., Liu, M., Yu, W., Hu, J., Zhang, S., Liu, J., & Tang. (2019). Evaluation of methods for quantifying bone collagen content and crosslinking using hydroxyproline and related markers. Journal of Orthopaedic Research, 37(1), 245–256. DOI: https://doi.org/10.1002/jor.24151.

Lemine, A. S., Ahmad, Z., Al-Thani, N. J., et al. (2024). Mechanical properties of human hepatic tissues to develop liver-mimicking phantoms for medical applications. Biomechanics and Modelling in Mechanobiology, 23(4), 373–396. DOI: https://doi.org/10.1007/s10237-023-01785-4.

Bregoli, C., Biffi, C. A., Tuissi, A., & Buccino, F. (2024). Effect of trabecular architectures on the mechanical response in osteoporotic and healthy human bone. Medical & Biological Engineering & Computing, 62(6), 3263–3281. DOI: https://doi.org/10.1007/s11517-024-03134-8

Wang, L., You, X., Zhang, L., Zhang, C., & Zou, W. (2022). Mechanical regulation of bone remodelling. Bone Research, 10(1), 16.

DOI: https://doi.org/10.1038/s41413-022-00190-4.

Guo, S., Wang, L., Shao, G., Shao, H., Jiang, J., & Chen, N. (2022). Mechanical behavior and energy dissipation of woven and warp-knitted PVC membrane materials under multistage cyclic loading. Polymers, 14(9), 1666. DOI: https://doi.org/10.3390/polym14091666

Kuo, Y. L., & Tsai, M. S. (2021). Energy absorption and damage resistance of polymer-based composites under cyclic loading. Polymer Composites, 42(2), 1102–1115. DOI: https://doi.org/10.1002/pc.25881.

Guo, S., Wang, L., Shao, G., Shao, H., Jiang, J., & Chen, N. (2022). Mechanical Behavior and Energy Dissipation of Woven and Warp-Knitted PVC Membrane Materials under Multistage Cyclic Loading. Polymers, 14(9), 1666. DOI: https://doi.org/10.3390/polym14091666

ASTM E2077-17. (2017). Standard test method for determining the energy dissipation of materials using cyclic loading. ASTM International.

Jeon, S.-Y., Shen, B., Traugutt, N. A., Zhu, Z., Fang, L., Yakacki, C. M., Nguyen, T. D., & Kang, S. H. (2021). Synergistic Energy Absorption Mechanisms of Architected Liquid Crystal Elastomers arXiv. DOI: https://arxiv.org/abs/2110.07461

Kumar, V., Abbas, A. K., & Aster, J. C. (2018). Robbins' Basic Pathology (10th ed.). Elsevier.

Bancroft, J. D., & Gamble, M. (2019). Theory and practice of histological techniques (8th ed.). Churchill Livingstone.

Berk, L., Kim, J.-H., Park, M.-S., Choi, S.-H., & Lee, D.-W. (2024). The effects of high-dose radiation therapy on bone. Radiation Oncology Journal, 42(1), 1–13. DOI: https://doi.org/10.3857/roj.2023.00969

Di Maggio, F. M., Minafra, L., Forte, G. I., et al. (2015). Portrait of the inflammatory response to ionising radiation treatment. Journal of Inflammation, 12, 14. DOI: https://doi.org/10.1186/s12950-015-0058-3

Emerzian, S. R., Wu, T., Vaidya, R., Tang, S. Y., Abergel, R. J., & Keaveny, T. M. (2023). Relative effects of radiation‐induced changes in bone mass, structure, and tissue material on vertebral strength in a rat model. Journal of Bone and Mineral Research, 38(7), 1032–1042. DOI:

https://doi.org/10.1002/jbmr.4828.

Rahman, N., Khan, R., & Badshah, S. (2018). Effect of X-Rays and Gamma Radiation on Bone Mechanical Properties: A Review of the Literature. Cell and Tissue Banking, 19, 457–472. DOI: https://doi.org/10.1007/s10561-018-9736-8.

Thio, Qian Chao Boon Siauw, Ogink, Paul T., Karhade, Anish V., Gormley, William B., Oner, Frans C., Verlaan, Jules J., & Schwab, Jeffrey H. (2023). Short-term impact of radiation therapy on bone mineral density and formation rate in patients with sacral tumours. European Spine Journal, 32(10), 2345–2353. DOI: https://doi.org/10.1007/s00223-023-01149-1

Patel, R. K., A. Singh, and P. Kumar. "Cytokine response to radiation exposure: Implications for tissue inflammation and repair." International Journal of Radiation Biology, vol. 99, no. 1, 2023, pp. 89–97, DOI: https://doi.org/10.0.4.56/09553002.2022.2134567

McBride, W. H., & Schaue, D. (2020). Radiation-induced tissue damage and response. The Journal of Pathology, 250(6), 647–655.

DOI: https://doi.org/10.1002/path.5389

Wei, J., Wang, B., Wang, H., Meng, L., Zhao, Q., Li, X., Xin, Y., & Jiang, X. (2019). Radiation-induced normal tissue damage: Oxidative stress and epigenetic mechanisms. Oxidative Medicine and Cellular Longevity, Article ID 3010342. DOI: https://doi.org/10.1155/2019/3010342

Donaubauer, A.-J., Deloch, L., Becker, I., et al. (2020). The influence of radiation on bone and bone cells—Differential effects on osteoclasts and osteoblasts. International Journal of Molecular Sciences, 21(17), 6377. DOI: https://doi.org/10.3390/ijms21176377.

Drakou, A., Kaspiris, A., Vasiliadis, E., Evangelopoulos, D.-S., Koulalis, D., Lenti, A., Chatziioannou, S., & Pneumatikos, S. G. (2025). Oxidative Stress and Bone Remodelling: An Updated Review. Annals of Case Reports, 10. DOI: https://doi.org/10.29011/2574-7754.102174.

Mansor, A., Ariffin, A. F., Yusof, N., Mohd, S., Ramalingam, S., Md Saad, A. P., Baharin, R., & Min, N. W. (2023). Effects of processing and gamma radiation on mechanical properties and organic composition of frozen, freeze-dried and demineralised human cortical bone allograft. Cell and Tissue Banking, 24, 25–35. DOI: https://doi.org/10.1007/s10561-022-10013-9.

Yang, P., Li, J., Zhang, T., Ren, Y., Zhang, Q., Liu, R., Li, H., Hua, J., Wang, W.-A., Wang, J., & Zhou, H. (2023). Ionizing radiation-induced mitophagy promotes ferroptosis by increasing intracellular free fatty acids. Cell Death & Differentiation, 30, 2432–2445. DOI:

https://doi.org/10.1038/s41418-023-01230-0.

Shimura, T., Takahashi, Y., Saito, C., Maida, R., Sasatani, M., Kunoh, T., & Ushiyama, A. (2025). Ionizing radiation triggers the release of mitochondrial DNA into the cytosol as a signal of mitochondrial damage. Scientific Reports.

DOI: https://doi.org/10.1038/s41598-025-04845-0.