Permeation Enhancers for Transdermal Drug Delivery: Strategies and Advancements Focusing Macromolecules

Main Article Content

Pratikeswar Panda
Arpita Sahu

Abstract

The various transdermal drug delivery method, allows medications to cross the biological barriers and enter the bloodstream to elicit desired pharmacological response. The relevant article focuses on the numerous biological and other macromolecule-based permeation enhancers including carbohydrates, protein-peptides and lipids used in transdermal drug delivery. Though the focus of the study is on role of macromolecule, as well as their mechanisms and modes of action for efficient transdermal drug delivery, it also concentrates on the recent developments in various permeation enhancement techniques. Transdermal administration of weakly permeable medications with shorter biological half-lives typically makes use of the permeation augmentation techniques and agents, which should not have any explicit toxicological implications and incompatibility within the formulations. In this review, limelight has been given to the promising permeation enhancers of current scenario which consist of various macromolecules. 

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
Pratikeswar Panda and Arpita Sahu , Trans., “Permeation Enhancers for Transdermal Drug Delivery: Strategies and Advancements Focusing Macromolecules”, IJAPSR, vol. 3, no. 6, pp. 1–11, Jan. 2024, doi: 10.54105/ijapsr.F4028.103623.
Section
Articles

How to Cite

[1]
Pratikeswar Panda and Arpita Sahu , Trans., “Permeation Enhancers for Transdermal Drug Delivery: Strategies and Advancements Focusing Macromolecules”, IJAPSR, vol. 3, no. 6, pp. 1–11, Jan. 2024, doi: 10.54105/ijapsr.F4028.103623.
Share |

References

Brahmankar. Permeability and permeation enhancer, biophys'cutics & Ph'cokinetics-A treatise (2nd ed). (2010), 50–105.

Martin, A. (2005). Permeation enhancer, Phy Pharm (4th ed) (pp. 351–353, 526–527, 532, 537, 541–542).

Ghasemiyeh, P., & Mohammadi-Samani, S. (2020). Potential of nanoparticles as permeation enhancers and targeted delivery options for skin: Advantages and disadvantages. Drug Design, Development and Therapy, 14, 3271–3289. https://doi.org/10.2147/DDDT.S264648

Vanbever, R., Prausnitz, M. R., & Préat, V. (1997). Macromolecules as novel transdermal transport enhancers for skin electroporation. Pharmaceutical Research, 14(5), 638–644. https://doi.org/10.1023/A:1012161313701

Pereira, R., Silva, S. G., Pinheiro, M., Reis, S., & Vale, M. L. D. (2021, May 7). Current status of amino acid-based permeation enhancers in transdermal drug delivery. Membranes, 11(5), 343. https://doi.org/10.3390/membranes11050343, PubMed: 34067194, PubMed Central: PMC8151591

Zhu, Q., Chen, Z., Paul, P. K., Lu, Y., Wu, W., & Qi, J. (2021, August 1). Oral delivery of proteins and peptides: Challenges, status quo and future perspectives. Acta Pharmaceutica Sinica. B, 11(8), 2416–2448. https://doi.org/10.1016/j.apsb.2021.04.001

Aqil, M., Ahad, A., Sultana, Y., & Ali, A. (2007). status of terpenes as skin Penetration enhancers. Drug Discovery Today, 12(23–24), 1061–1067. https://doi.org/10.1016/j.drudis.2007.09.001

Biruss, B., Khaliq, H., & Valenta, C. (2007). Evaluation of an Eucalyptus oil containing topical drug delivery system for selected steroid hormones. International Journal of Pharmacy, 328, 142–151.

Vanbever, R., Prausnitz, M. R., & Préat, V. (1997). Macromolecules as novel transdermal transport enhancers for skin electroporation. Pharmaceutical Research, 14(5), 638–644. https://doi.org/10.1023/A:1012161313701

Roy. (2017). Permeation enhancers: A major breakthrough in drug delivery technology. International Journal of Pharmaceutical Sciences and Research, 1001–1011.

Park, E. S., Chang, S. J., Rhee, Y. S., & Chi, S. C. (2001, January 1). Effects of adhesives and permeation enhancers on the skin permeation of captopril. Drug Development and Industrial Pharmacy, 27(9), 975–980. https://doi.org/10.1081/ddc-100107679

Qi, Q. M., Duffy, M., Curreri, A. M., Balkaran, J. P. R., Tanner, E. E. L., & Mitragotri, S. (2020, November). Comparison of ionic liquids and chemical permeation enhancers for transdermal drug delivery. Advanced Functional Materials, 30(45), 2004257. https://doi.org/10.1002/adfm.202004257

Single, V., Saini, S., Singh, G., Rana, A. C., & Vjoshi, B. (2011). Penetration enhancers: A novel strategy for enhancing transdermal drug delivery. International Research Journal of Pharmacy, 2(12), 32–36.

Doh, H. J., Jung, Y., Balakrishnan, P., Cho, H. J., & Kim, D. D. (2013, January 1). A novel lipid nanoemulsion system for improved permeation of granisetron. Colloids and Surfaces. B, Biointerfaces, 101, 475–480. https://doi.org/10.1016/j.colsurfb.2012.07.019

Roy, N., Agrawal, M., Chaudhary, S., Tirkey, V., Dhwaj, A., & Mishra, N.. review article on permeation enhancers: A major breakthrough I drug delivery technology. Department of biomedical engineering. IIIT. (2012).

Sebastiani, P., Nicoli, S. N. P., & Santi, P. (2005, March). Effect of lactic acid and iontophoresis on drug permeation across rabbit ear skin. International Journal of Pharmaceutics, 292(1–2), 119–126. https://doi.org/10.1016/j.ijpharm.2004.11.038

Sinha, V. R., & Kaur, M. P. (2000, January 1). Permeation enhancers for transdermal drug delivery. Drug Development and Industrial Pharmacy, 26(11), 1131–1140. https://doi.org/10.1081/ddc-100100984

Barry, B. W. (1988, December). Action of skin penetration enhancers-the Lipid Protein partitioning theory. International Journal of Cosmetic Science, 10(6), 281–293. https://doi.org/10.1111/j.1467-2494.1988.tb00028.x, PubMed: 19456942

Ivaturi, V. D., & Kim, S. K. (2009, October). Enhanced permeation of methotrexate in vitro by ion pair formation with L-arginine. Journal of Pharmaceutical Sciences, 98(10), 3633–3639. https://doi.org/10.1002/jps.21663

Whitehead, K., Karr, N., & Mitragotri, S. (2008, August). Safe and effective permeation enhancers for oral drug delivery. Pharmaceutical Research, 25(8), 1782–1788. https://doi.org/10.1007/s11095-007-9488-9

Másson, M., Loftsson, T., Másson, G., & Stefánsson, E. (1999, May 1). Cyclodextrins as permeation enhancers: Some theoretical evaluations and in vitro testing. Journal of Controlled Release, 59(1), 107–118. https://doi.org/10.1016/s0168-3659(98)00182-5

Sohi, H., Ahuja, A., Ahmad, F. J., & Khar, R. K. (2010, March 1). Critical evaluation of permeation enhancers for oral mucosal drug delivery. Drug Development and Industrial Pharmacy, 36(3), 254–282. https://doi.org/10.1080/03639040903117348

Figueiras, A., Hombach, J., Veiga, F., & Bernkop-Schnürch, A. B. (2009, February). In vitro evaluation of natural and methylated cyclodextrins as buccal permeation enhancing system for omeprazole delivery. European Journal of Pharmaceutics and Biopharmaceutics, 71(2), 339–345. https://doi.org/10.1016/j.ejpb.2008.08.016

Rajan, R., & Vasudevan, D. T. (2012, April). Effect of permeation enhancers on the penetration mechanism of transfersomal gel of ketoconazole. Journal of Advanced Pharmaceutical Technology and Research, 3(2), 112–116. https://doi.org/10.4103/2231-4040.97286

Hornof, M. D., & Bernkop-Schnürch, A. B. (2002, December). In vitro evaluation of the permeation enhancing effect of polycarbophil–cysteine conjugates on the cornea of rabbits. Journal of Pharmaceutical Sciences, 91(12), 2588–2592. https://doi.org/10.1002/jps.10258

Abruzzo, A., Armenise, N., Bigucci, F., Cerchiara, T., Gösser, M. B., Samorì, C., Galletti, P., Tagliavini, E., Brown, D. M., Johnston, H. J., Fernandes, T. F., & Luppi, B. (2017, May). Surfactants from itaconic acid: Toxicity to HaCaT keratinocytes in vitro, micellarsolubilization, and skin permeation enhancement of hydrocortisone. International Journal of Pharmaceutics, 524(1–2), 9–15. https://doi.org/10.1016/j.ijpharm.2017.03.056

Bernkop-Schnürch, A. B., Guggi, D., & Pinter, Y. (2004, January). Thiolatedchitosans development and in vitro evaluation of a mucoadhesive, permeation enhancing oral drug delivery system. Journal of Controlled Release, 94(1), 177–186. https://doi.org/10.1016/j.jconrel.2003.10.005

Artusi, M., Nicoli, S., Colombo, P., Bettini, R., Sacchi, A., & Santi, P. (2004, October). Effect of chemical enhancers and iontophoresis on thiocolchicoside permeation across rabbit and human skin in vitro. Journal of Pharmaceutical Sciences, 93(10), 2431–2438. https://doi.org/10.1002/jps.20152

Fangab, J. Y., Fangc, C. L., Hongd, C. T., Chenab, H. Y., Lina, T. Y., & Mei, H. (2001, January). Capsaicin and nonivamide as novel skin permeation enhancers for indomethacin. European Journal of Pharmaceutics and Biopharmaceutics, 12, 195–203.

Vaddi, H. K., Wang, L. Z., Ho, P. C., & Chan, S. Y. (2001, January 16). Effect of some enhancers on the permeation of haloperidol through rat skin in vitro. International Journal of Pharmaceutics, 212(2), 247–255. https://doi.org/10.1016/s0378-5173(00)00616-5

Chen, J., Jiang, Q. D., Wu, Y. M., Liu, P., Yao, J. H., Lu, Q., Zhang, H., & Duan, J. A. (2015, October 7). Potential of essential oils as penetration enhancers for transdermal administration of ibuprofen to treat dysmenorrhoea. Molecules. Mol, 20(10), 18219–18236. https://doi.org/10.3390/molecules201018219

Ghasemiyeh, P., & Mohammadi-Samani, S. (2020, August 12). Potential of nanoparticles as permeation enhancers and targeted delivery options for skin: Advantages and disadvantages. Drug Design, Development and Therapy, 14, 3271–3289. https://doi.org/10.2147/DDDT.S264648

Maher, S., Brayden, D. J., Casettari, L., & Illum, L. (2019). Application of permeation enhancers in oral delivery of macromolecules: An update. Pharmaceutics, 11(1), 41. https://doi.org/10.3390/pharmaceutics11010041

Kim, N. J., Harris, A., Elghouche, Gama, Siesky, W., & B. (2016). Ocular permeation enhancers in nanobiomaterials for ophthalmic drug delivery. Springer.

Patil, U. K., & Saraogi, R. (2014, July). Natural products as potential drug permeation enhancer in transdermal drug delivery system. Archives of Dermatological Research, 306(5), 419–426. https://doi.org/10.1007/s00403-014-1445-y

Nan, L., Liu, C., Li, Q., Wan, X., Guo, J., Quan, P., & Fang, L. (2018, November). Investigation of the enhancement effect of the natural transdermal permeation enhancers from. var, L.L.; angustum; Busch, N. Mechanistic insight based on interaction among drug, enhancers and skin. European Journal of Pharmacology, 124, 105–113.

P K, L., K, S., D, P., B, V., & Chennuri, A. (2017). Oils as penetration enhancers for improved transdermal drug delivery: A review. International Research Journal of Pharmacy, 8(4), 9–17. https://doi.org/10.7897/2230-8407.080440

Sharma, K., Mittal, A., & Chauhan, N. (2015). Aloe vera as Penetration Enhancer. International Journal of Drug Development and Research.

Chauhan, S. B. (2017). Penetration enhancement techniques. Journal of Applied Pharmacy, 09(2), 2. https://doi.org/10.21065/1920-4159.1000235

Haq, A., & Michniak-Kohn, B. (2018). Effects of solvents and penetration enhancers on transdermal delivery of thymoquinone: Permeability and skin deposition study. Drug Delivery, 25(1), 1943–1949. https://doi.org/10.1080/10717544.2018.1523256

Stefanic, M., Ward, K., Tawfik, H., Seemann, R., Baulin, V., Guo, Y., Fleury, J. B., & Drouet, C. (2017, September). Apatite nanoparticles strongly improve red blood cell cryopreservation by mediating trehalose delivery via enhanced membrane permeation. Biomaterials, 140, 138–149. https://doi.org/10.1016/j.biomaterials.2017.06.018

Peña-Juárez, M. C., Guadarrama-Escobar, O. R., & Escobar-Chávez, J. J. (2022). Transdermal delivery systems for biomolecules. Journal of Pharmaceutical Innovation, 17(2), 319–332. https://doi.org/10.1007/s12247-020-09525-2

Pereira, R., Silva, S. G., Pinheiro, M., Reis, S., & Vale, M. L. D. (2021, May 7). Current status of amino acid-based permeation enhancers in transdermal drug delivery. Membranes, 11(5), 343. https://doi.org/10.3390/membranes11050343, PubMed: 34067194, PubMed Central: PMC8151591

Ameen, D., & Michniak-Kohn, B. (2017). Transdermal delivery of dimethyl fumarate for Alzheimer’s disease: Effect of penetration enhancers. International Journal of Pharmaceutics, 529(1–2), 465–473. https://doi.org/10.1016/j.ijpharm.2017.07.031

Zhu, Q., Chen, Z., Paul, P. K., Lu, Y., Wu, W., & Qi, J. (2021, August 1). Oral delivery of proteins and peptides: Challenges, status quo and future perspectives. Acta Pharmaceutica Sinica. B, 11(8), 2416–2448. https://doi.org/10.1016/j.apsb.2021.04.001

Aqil, M., Ahad, A., Sultana, Y., & Ali, A. (2007). status of terpenes as skin Penetration enhancers. Drug Discovery Today, 12(23–24), 1061–1067. https://doi.org/10.1016/j.drudis.2007.09.001

Biruss, B., Khaliq, H., & Valenta, C. (2007). Evaluation of an Eucalyptus oil containing topical drug delivery system for selected steroid hormones. International Journal of Pharmacy, 328, 142–151.

Gonçalves, R. F. S., Martins, J. T., Duarte, C. M. M., Vicente, A. A., & Pinheiro, A. C. (2018). Advances in nutraceutical delivery systems: From formulation design for bioavailability enhancement to efficacy and safety evaluation. Trends in Food Science and Technology, 78, 270–291. https://doi.org/10.1016/j.tifs.2018.06.011

Nawaz, A., & Wong, T. W. (2017). Microwave as skin permeation enhancer for transdermal drug delivery of chitosan-5-fluorouracil nanoparticles. Carbohydrate Polymers, 157, 906–919. https://doi.org/10.1016/j.carbpol.2016.09.080

Premarathne, E. P., Karunaratne, D. N., & Perera, A. D. Carbohydrate lyotropic liquid crystals materials as stabilizer and permeation enhancer for microemulsion based. Drug Delivery System.

Jain, A. K., Khar, R. K., Ahmed, F. J., & Diwan, P. V. (2008). Effective insulin delivery using starch nanoparticles as a potential trans-nasal mucoadhesive carrier. European Journal of Pharmaceutics and Biopharmaceutics, 69(2), 426–435. https://doi.org/10.1016/j.ejpb.2007.12.001

Saboktakin, M. R., Akhyari, S., & Nasirov, F. A. (2014). Synthesis and characterization of modified starch/polybutadiene as novel transdermal Drug Delivery System. International Journal of Biological Macromolecules, 69, 442–446. https://doi.org/10.1016/j.ijbiomac.2014.05.062

Liston, L. S., Rivas, P. L., Sakdiset, P., See, G. L., & Arce, F. (2022). Chemical permeation enhancers for topically-applied vitamin C and its derivatives: A systematic review. Cosmetics, 9(4), 85. https://doi.org/10.3390/cosmetics9040085

Muankaew, C., & Loftsson, T. (2018). Cyclodextrin-based formulations: A non-invasive platform for targeted drug delivery. Basic and Clinical Pharmacology and Toxicology, 122(1), 46–55. https://doi.org/10.1111/bcpt.12917

Sahu, K., Kaurav, M., & Pandey, R. S. (2017). Protease loaded permeation enhancer liposomes for treatment of skin fibrosis arisen from second degree burn. Biomedicine and Pharmacotherapy, 94, 747–757. https://doi.org/10.1016/j.biopha.2017.07.141

Vora, L. K., Courtenay, A. J., Tekko, I. A., Larrañeta, E., & Donnelly, R. F. (2020). Pullulan-based dissolving microneedle arrays for enhanced transdermal delivery of small and large biomolecules. International Journal of Biological Macromolecules, 146, 290–298. https://doi.org/10.1016/j.ijbiomac.2019.12.184

Maher, S., Mrsny, R. J., & Brayden, D. J. (2016, November 15). Intestinal permeation enhancers for oral peptide delivery. Advanced Drug Delivery Reviews, 106(B), 277–319. https://doi.org/10.1016/j.addr.2016.06.005

Cilek, A., Celebi, N., Tirnaksiz, F., & Tay, A. (2005). A lecithin-based microemulsion of rh-insulin with aprotinin for oral administration: Investigation of hypoglycemic effects in nondiabetic and STZ-induced diabetic rats. International Journal of Pharmaceutics, 298(1), 176–185. https://doi.org/10.1016/j.ijpharm.2005.04.016

Wang, T., Wang, N., Hao, A., He, X., Li, T., & Deng, Y. (2010). Lyophilization of water-in-oil emulsions to prepare phospholipid-based anhydrous reverse micelles for oral peptide delivery. European Journal of Pharmaceutical Sciences, 39(5), 373–379. https://doi.org/10.1016/j.ejps.2010.01.006

Tuvia, S., Pelled, D., Marom, K., Salama, P., Levin-Arama, M., Karmeli, I., Idelson, G. H., Landau, I., & Mamluk, R. (2014). A novel suspension formulation enhances intestinal absorption of macromolecules via transient and reversible transport mechanisms. Pharmaceutical Research, 31(8), 2010–2021. https://doi.org/10.1007/s11095-014-1303-9