A Review: Nanoparticles for Drug DeliveryDesign, Development & Therapeutic Application

Main Article Content

Mahek M. Shaikh
Ajit B. Tuwar
Dr. Megha T. Salve

Abstract

Nanoscience is now used in many clinical and medical domains, including the treatment of cancer. On the other hand, there are many people who suffer from cancer and its variants, which have been rumored to be inclusive. In actuality, despite the therapeutic impact, patients have uncomfortable side effects from modern treatment procedures like chemotherapy, radiation, etc. To address this serious sickness, researchers and scientists are also trying to develop and improve treatment alternatives and approaches. These days, nanotechnology and nanoscience are widely used. Their various fields, such as nanoparticles, are frequently employed for a variety of purposes, particularly in imaging and drug delivery as well as diagnostic devices. The release of cancer is significantly impacted by release mechanisms centered on nanotechnology [1]. The precision medicine age has led to bottlenecks in traditional medications, including decreased solubility, absorption, and particularly ineffective organ or cell targeting. To address the aforementioned flaws, it is critically necessary to find and implement new techniques or tactics to alter existing medications or develop new ones. Although there are still numerous shortcomings, the solubility, absorption, and targeting of conventional medications have been significantly enhanced with the use of nanotechnology through the modification and fabrication of different kinds of nanoparticles [2].

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
Mahek M. Shaikh, Ajit B. Tuwar, and Dr. Megha T. Salve , Trans., “A Review: Nanoparticles for Drug DeliveryDesign, Development & Therapeutic Application”, IJAPSR, vol. 5, no. 2, pp. 5–9, Feb. 2025, doi: 10.54105/ijapsr.A4065.05020225.
Section
Articles

How to Cite

[1]
Mahek M. Shaikh, Ajit B. Tuwar, and Dr. Megha T. Salve , Trans., “A Review: Nanoparticles for Drug DeliveryDesign, Development & Therapeutic Application”, IJAPSR, vol. 5, no. 2, pp. 5–9, Feb. 2025, doi: 10.54105/ijapsr.A4065.05020225.
Share |

References

De Jong WH, Borm PJ. Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine. 2008;3(2):133-49. PMID: 18686775; PMCID: PMC2527668. DOI: https://doi.org/10.2147/IJN.S596

Yang J, Jia C, Yang J. Designing Nanoparticle-based Drug Delivery Systems for Precision Medicine. Int J Med Sci. 2021 Jun 5;18(13):2943-2949. PMID: 34220321; PMCID: PMC8241788. DOI: https://doi.org/10.7150/ijms.60874

Didier Astruc, Introduction to Nanomedicine. Received: 15 December 2015 ; Accepted: 15 December 2015 ; Published: 22 December 2015 Academic Editor: Derek J. McPhee .Molecules 2016, 21, 4; DOI: https://doi.org/10.3390/molecules21010004

Chenthamara, D., Subramaniam, S., Ramakrishnan, S.G. et al. Therapeutic efficacy of nanoparticles and routes of administration. Biomater Res 23, 20 (2019). DOI: https://doi.org/10.1186/s40824-019-0166-x

Azeez Yusuf ORCID, Awatif Rashed Z. Almotairy, Hanan Henidi, Ohoud Y. Alshehri and Mohammed S. Aldughaim. Nanoparticles as Drug Delivery Systems: A Review of the Implication of Nanoparticles’ Physicochemical Properties on Responses in Biological Systems. Nanomaterials 2022, 12, 4494. DOI: https://doi.org/10.3390/nano12244494

Nadeem Baig, Irshad Kammakakam, Wail Falath. Materials Advances Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges. Issue 6, 2021. DOI: https://doi.org/10.1039/D0MA00807A

Rai Dhirendra Prasad,Naresh Charmode, Om Prakash Shrivastav, Saurabh R Prasad, Asha Moghe, Anant Samant, Prashant D Sarvalkar, Neeraj R Prasad. A Review on Concept of Nanotechnology in Veterinary Medicine. DOI: https://doi.org/10.30919/esfaf481

Ravi Varala1, Vijay Kotra, Anil Kumar Kanuri, Mahesh Reddy Burra, Shaik Nyamathullah3Nano drug delivery-benefits, limitations and future perspective. Nano and Medical Materials 2023, 3(1), 244. DOI: https://doi.org/10.59400/nmm.v3i1.244

Michael J. Mitchell, Margaret M. Billingsley, Rebecca M. Haley, Marissa E. Wechsler6, Nicholas A. Peppas, and Robert Langer 1Engineering precision nanoparticles For drug delivery. volume 20 February 2021. DOI: https://doi.org/10.1038/s41573-020-0090-8

Sun, L., Liu, H., Ye, Y. et al. Smart nanoparticles for cancer therapy. Sig Transduct Target Ther 8, 418 (2023). DOI: https://doi.org/10.1038/s41392-023-01642-x

Obaid Afzal, Abdulmalik S. A. Altamimi, Muhammad Shahid Nadeem, Sami I. Alzarea, Waleed Hassan Almalki, Aqsa Tariq, Bismillah Mubeen, Bibi Nazia Murtaza, Saima Iftikhar, Naeem Riaz 8 and Imran Kazmi 2, Review Nanoparticles in Drug Delivery: From History to Therapeutic Applications. Nanomaterials 2022, 12, 4494. DOI: https://doi.org/10.3390/nano12244494

Dr. Shiya Soliman, Soliman S (2023) Nanomedicine: Advantages and Disadvantages of Nanomedicine. J Nanomed Nanotech. 14: 666.31-Mar-2023, https://www.walshmedicalmedia.com/open-access/nanomedicine-advantages-and-disadvantages-of-nanomedicine-118687.html

Rizvi SAA, Saleh AM. Applications of nanoparticle systems in drug delivery technology. Saudi Pharm J. 2018 Jan;26(1):64-70. Epub 2017 Oct 25. PMID: 29379334; PMCID: PMC5783816. DOI: https://doi.org/10.1016/j.jsps.2017.10.012

Yusuf A, Almotairy ARZ, Henidi H, Alshehri OY, Aldughaim MS. Nanoparticles as Drug Delivery Systems: A Review of the Implication o” Nanoparticles’ Physicochemical Properties on Responses in Biological Systems. Polymers (Basel). 2023 Mar 23;15(7):1596. PMID: 37050210; PMCID: PMC10096782. DOI: https://doi.org/10.3390/polym15071596

Jiang, W., Kim, B., Rutka, J. et al. Nanoparticle-mediated cellular

response is size-dependent. Nature Nanotech 3, 145–150 (2008). DOI: https://doi.org/10.1038/nnano.2008.30

REJMAN, Volker OBERLE, Inge S. ZUHORN, Dick HOEKSTRA; Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem J 1 January 2004; 377 (1): 159–169. DOI: https://doi.org/10.1042/bj20031253

Chithrani, D.B.; Dunne, M.; Stewart, J.; Allen, C.; Jaffray, D.A. Cellular uptake and transport of gold nanoparticles incorporated in a liposomal carrier. Nanomedicine 2010, 6, 161–169. [CrossRef]. DOI: https://doi.org/10.1016/j.nano.2009.04.009

Fillion, P.; Desjardins, A.; Sayasith, K.; Lagace, J. Encapsulation of DNA in negatively charged liposomes and inhibition of bacterial gene expression with fluid liposome-encapsulated antisense oligonucleotides. Biochim. Biophys. Acta 2001, 1515, 44–54. [CrossRef] [PubMed]. DOI: https://doi.org/10.1016/S0005-2736(01)00392-3

Ewert, K.K.; Kotamraju, V.R.; Majzoub, R.N.; Steffes, V.M.; Wonder, E.A.; Teesalu, T.; Ruoslahti, E.; Safinya, C.R. Synthesis of Linear and cyclic peptide-PEG-lipids for stabilization and targeting of cationic liposome-DNA complexes. Bioorg. Med. Chem. Lett. 2016, 26, 1618–1623. DOI: https://doi.org/10.1016/j.bmcl.2016.01.079

Wozniak, A.; Malankowska, A.; Nowaczyk, G.; Grzeskowiak, B.F.; Tusnio, K.; Slomski, R.; Zaleska-Medynska, A.; Jurga, S. Size and shape-dependent cytotoxicity profile of gold nanoparticles for biomedical applications. J. Mater. Sci. Mater. Med. 2017, 28, 92. DOI: https://doi.org/10.1007/s10856-017-5902-y

Anuja Anuja. (2024). Review of: “Nanomaterials: History, Production, Properties, Applications, and Toxicities”. Qeios. DOI: https://doi.org/10.32388/4L2W2F

Nadia Saleh, Zubaida Yousaf, in, Tools and techniques for the optimized synthesis, reproducibility and scale up of desired nanoparticles from plant derived material and their role in pharmaceutical properties. DOI: https://doi.org/10.1016/B978-0-12-813629-4.00003-6

Iravani, S.1,; Korbekandi, H.2; Mirmohammadi, S.V.3; Zolfaghari, B.1. Synthesis of silver nanoparticles: chemical, physical and biological methods. Research in Pharmaceutical Sciences 9(6):p 385-406, Nov–Dec 2014. https://journals.lww.com/rips/fulltext/2014/09060/synthesis_of_silver_nanoparticles__chemical,.1.aspx

Savita Kumari And Leena Sarkar, A Review on Nanoparticles: Structure, Classification, Synthesis & Applications. DOI: https://doi.org/10.37398/JSR.2021.650809

Chou-Yi Hsu a, Ahmed Mahdi Rheima b, Mustafa M. Kadhim c, Nada Nadhim Ahmed b, Srwa Hashim Mohammed d, Fatima Hashim Abbas e, Zainab Talib Abed f, Zahra Muhammed Mahdi g, Zainab Sabri Abbas h, Safa K. Hachim I j, Farah K. Ali k, Zaid H Mahmoud l, Ehsan Kianfar mno An overview of nanoparticles in drug delivery: Properties and applications. https://doi.org/10.1016/j.sajce.2023.08.009

Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP: Semiconduc-Tor nanocrystals as fluorescent biological labels. Science 1998,281:2013-2016. DOI: https://doi.org/10.1126/science.281.5385.2013

Mah C, Zolotukhin I, Fraites TJ, Dobson J, Batich C, Byrne BJ: Micro-Sphere-mediated delivery of recombinant AAV vectors in Vitro and in vivo. Mol Therapy 2000, 1:S239. https://www.researchgate.net/publication/289111459_Microsphere-mediated_delivery_of_recombinant_AAV_vectors_in_vitro_and_in_vivo

Edelstein RL, Tamanaha CR, Sheehan PE, Miller MM, Baselt DR, Whit-Man LJ, Colton RJ: The BARC biosensor applied to the detection of biological warfare agents. Biosensors Bioelectron 2000,14:805-813. DOI: https://doi.org/10.1016/S0956-5663(99)00054-8

Nam JM, Thaxton CC, Mirkin CA: Nanoparticles-based bio-bar Codes for the ultrasensitive detection of proteins. Science 2003, 301:1884-1886. DOI: https://doi.org/10.1126/science.1088755

Mahtab R, Rogers JP, Murphy CJ: Protein-sized quantum dot Luminescence can distinguish between “straight”, “bent”, And “kinked” oligonucleotides. J Am Chem Soc 1995,117:9099-9100. DOI: https://doi.org/10.1021/ja00140a040

Ma J, Wong H, Kong LB, Peng KW: Biomimetic processing of Nanocrystallite bioactive apatite coating on titanium. NanoteChnology 2003, 14:619-623. DOI: https://doi.org/10.1088/0957-4484/14/6/310

Yoshida J, Kobayashi T: Intracellular hyperthermia for cancer Using magnetite cationic liposomes. J Magn Magn Mater 1999,194:176-184. DOI: https://doi.org/10.1111/j.1349-7006.1996.tb03129.x

Molday RS, MacKenzie D: Immunospecific ferromagnetic iron Dextran reagents for the labeling and magnetic separation of cells. J Immunol Methods 1982, 52:353-367. DOI: https://doi.org/10.1016/0022-1759(82)90007-2

Weissleder R, Elizondo G, Wittenburg J, Rabito CA, Bengele HH, Josephson L: Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging. Radiology 1990, 175:489-493. https://pubmed.ncbi.nlm.nih.gov/2326474/

Parak WJ, Boudreau R, Gros ML, Gerion D, Zanchet D, Micheel CM, Williams SC, Alivisatos AP, Larabell CA: Cell motility and meta-Static potential studies based on quantum dot imaging of Phagokinetic tracks. Adv Mater 2002, 14:882-885. DOI: https://doi.org/10.1002/1521-4095(20020618)14:12<882::AID-ADMA882>3.0.CO;2-Y

NANOGRAFI EXPLAINS History, Scope and Future of Nanotechnology. https://nanografi.com/blog/history-scope-and-future-of-nanotechnology/

The future of nanotechnology. https://euon.echa.europa.eu/the-future-of-nanotechnology

Rehman, F., Ali, S. S., Panhwar, H., Phul, Dr. A. H., Rajpar, S. A., Ahmed, S., Rabbani, S., & Mehmood, T. (2021). Brain Tumor Detection from MR Images using Image Process Techniques and Tools in Matlab Software. In International Journal of Advanced Medical Sciences and Technology (Vol. 1, Issue 4, pp. 1–4). DOI: https://doi.org/10.54105/ijamst.C3016.081421

Akila, Mrs. P. G., Batri, K., Sasi, G., & Ambika, R. (2019). Denoising of MRI Brain Images using Adaptive Clahe Filtering Method. In International Journal of Engineering and Advanced Technology (Vol. 9, Issue 1s, pp. 91–95). DOI: https://doi.org/10.35940/ijeat.A1018.1091S19

Islam, Md. A., Akhter, T., Begum, A., Hasan, Md. R., & Rafi, F. S. (2020). Brain Tumor Detection from MRI Images using Image Processing. In International Journal of Innovative Technology and Exploring Engineering (Vol. 9, Issue 8, pp. 618–623). DOI: https://doi.org/10.35940/ijitee.H6628.069820

Most read articles by the same author(s)

1 2 3 4 5 6 > >>