Application of HR CS GF-MAS for Determining the Intracellular Concentration of Fluorinated Drugs and Drug Candidates in Cancer Cells, Using Calcium Monofluoride (CaF) as the Target Molecule
Main Article Content
Abstract
Fluorinated drugs and drug candidates are showing signs of becoming a cornerstone in the fight against cancer, a threat to the well-being of humanity. An HR CS GF-MAS method has been developed for quantifying their intracellular concentration in cancer cells, a prerequisite for efficacy and effectiveness. The study determined the intracellular concentration of the fluorinated drug 5 Fluoro uracil (5FU) and a drug candidate, [chlorido (Fe (III)4Fluoro Salophen)], an iron complex. The method presented here is very sensitive with a lower limit of quantitation of 3µg/L equivalent to 3ng/ml, accurate, with an accuracy range of 99.8-102.9%; it is fast, less than two minutes per sample, linear in the range of 12.5-600µg/l (R2=1), precision was demonstrated by the method, the highest coefficient of variance for inter and intra-day precision test was 5.1. A novel sample preparation approach using citric acid and tetramethyl ammonium hydroxide effectively extracted fluorides with high accuracy and precision. These reagents equally stabilized fluorides and prevented their loss in the form of hydrogen fluoride. These attributes enable the method to generate accurate and reliable data that informs the drug development process. The tested ability of the validated HR CS GF-MAS method to determine the intracellular concentration of both organofluorinated drugs and fluorinated metal complexes makes it a reliable tool for developing and testing fluorinated medications in general. Drug researchers may also use this method to explore the mechanism of fluorinated drug uptake in cells and analyse fluorinated drugs in other matrices.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
World Health Organization Cancer. (accessed June 4, 2023). https://www.who.int/health-topics/cancer
S. Hyuna, F. Jacques, L. S. Rebecca, L. Mathieu, S. Isabelle, J. Ahmedin, B Freddie. (2021). GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71, 209-249. Available: DOI: https://doi.org/10.3322/caac.21660
J. Ferlay, M. I. Colombet, D.M. Soerjomataram M. Parkin, A. Znaor, A. Piñeros, F. Bray. Global cancer observatory: cancer today. (accessed June 4, 2023). https://gco.iarc.fr/today/
C. J. Timothy, P. Ga, and J. L. Stephen. (2014). Understanding and improving platinum anticancer drugs--phenanthriplatin. Anticancer Research. 34 471-476. Available: PMCID: PMC3937549. http://www.ncbi.nlm.nih.gov/pmc/articles/pmc3937549/
J. A. Sparano, R.J. Gray, D. F. Makower, K.I. Pritchard, K.S. Albain, D.F. Hayes, C.E. Geyer Jr, E. C. Dees, M. P. Goetz, J. A. Olson Jr, T. Lively, S. S. Badve, T. J. Saphner, L. I. Wagner, T. J. Whelan, M. J. Ellis, S. Paik, W. C. Wood, P. M. Ravdin, M. M Keane, H. L. Gome, P. S. Reddy, T. F. Goggins, I. A. Mayer, A. M. Brufsky, D. L. Toppmeyer, I. V. G. Kaklaman, J. L. Berenberg, J. Abrams, and G. W. Sledge Jr. (2018). Adjuvant Chemotherapy Guided by a 21-Gene Expression Assay in Breast Cancer. N Engl J Med. 379 111-121. Available: DOI: http://doi.org//10.1056/NEJMoa1804710
G. Yothers, J. O. Michael, L. Mark, L. Margarita, M. C. Kim, M. Carl, P. Soonmyung, S. Saima, S. Steven, W. Norman (2019). Validation of the 12-gene colon cancer recurrence score in NSABP C-07 as a predictor of recurrence in patients with stage II and III colon cancer treated with fluorouracil and leucovorin with or without oxaliplatin: results from NSABP C-07. J Clin Oncol. 37 902-909. Available: DOI: http://doi.org//10.21037/jgo-21-620
L. Kelland, The resurgence of platinum-based cancer chemotherapy. Nature Reviews Cancer. 2007 7 573-584. Available: DOI: http://doi.org//10.1038/nrc2167
A. W. Shruti, J. Darshana, R. Sudha, A. Rajani, B. Amrita. (2009). Development and Validation of Inductively Coupled Plasma Atomic Emission Spectroscopy [ICP-AES] Analytical Method for Estimating Cisplatin in Biological Samples. I J of Pharm. Educ. and Res. 2017 51 783-789. Available: DOI: http://doi.org//10.5530/ijper.51.4s.113
J. G. M. Jose, R. R. Marta, G. B. Alba, H. Elisa, K. Emma, B. Oscar. (2009) Importance and limitations of chemotherapy among the available treatments for gastrointestinal tumours. Anticancer Agents Med Chem. 9 2-84. Available: DOI: http://doi.org//10.2174/187152009787313828
S. Sudipta, K. M. Arun, K. Sunil, and M. Pralay. (2018). Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduction and Targeted Therapy 3 7. Available. DOI: http://doi.org//10.1038/s41392-017-0004-3
C. P. José, R. Z. Miriam, M. Carmen, C. Daniel, R. P. Jesus, A. Alcives, G. E. Raúl, M. G. Juan, M. David. (2022). Relevance of Fluorinated Ligands to the Design of Metallodrugs for Their Potential Use in Cancer Treatment. Pharmaceutics 14 402. Available. DOI: http://doi.org//10.3390/pharmaceutics14020402
S. Joshua, G. V. Jacob, S. Z. Edison, and O. Iwao. (2013) Fluorine-Containing Toxoid Anticancer Agents and Their Tumour-Targeted Drug Delivery. J Fluor Chem. 152 157– 165.Available. DOI: https://doi.org/10.1016/j.jfluchem.2013.05.013
I. Ullah, M. Ilyas, M. Omer, M. Adnan, and M. Sohail. (2022). Fluorinated triazoles are promising candidates for potential drug development, with a focus on their biological and pharmaceutical properties. Front. Chem. 10 926723. Available.
DOI: https://doi.org/10.3389/fchem.2022.926723
K. Magnus, H. Mao-Dong, B. Helmut, F. Stefan, O. Ingo, G. Ronald. (2012) Quantification of the fluorine-containing drug 5-fluorouracil in cancer cells by GaF molecular absorption via high-resolution continuum source molecular absorption spectrometry. Spectrochimica Acta PartB 69 50–55.Available: DOI: http://doi.org//10.1016/j.sab.2012.02.004
W. Irene, F. Valeria, L. Fanni, C. Christiane, F. Nathalie, K. Christina, F. Brigitte, K. Brigitte, G. Ronald. (2015). Fluorinated Fe (III) salophen complexes: optimisation of tumour cell-specific activity and utilisation of fluorine labelling for in vitro analysis. J. Med. Chem. 58 588–597. Available: DOI: https://doi.org/10.1021/jm500986h
W. Irene, G. Ronald. (2014). A highly sensitive method for in vitro testing of fluorinated drug candidates using high-resolution continuum source molecular absorption spectrometry (HR- CS MAS). Anal Bioanal. Chem 406 3431–3442. Available:
DOI: http://doi.org//10.1007/s00216-014-7780-1
G. Marcel. (1996). Tin-based antitumor drugs. Coordination Chemist, Reviews 151 41-51. Available:
DOI: https://doi.org/10.1016/S0010-8545(96)90193-9
B. F. Abramović, F. F. Gaál, and S. D. Cvetković. (1992). Titrimetric determination of fluoride in some pharmaceutical products used for fluoridation. Talanta. 39 511–515. Available: DOI: https://10.0.3.248/0039-9140(92)80173-b
C. McMaster, HPLC: A Practical User’s Guide, John Wiley & Sons, Hoboken, NJ, USA, 2007.
H. R. Bronstein and D. L. Manning, (1972). Lanthanum trifluoride as a membrane in a reference electrode for use in certain molten fluorides. Journal of the Electrochemical Society. 119 125. Available: https://iopscience.iop.org/article/10.1149/1.2404146
L. Dressler, D. Pozebon, F. E. Zebonr, J. N. Paniz, and G. Flores. (2002). Potentiometric determination of fluoride in geological and biological samples following pyrohydrolytic decomposition. Anal Chimica Acta. 466 117– 123. Available:
DOI: http://dx.doi.org/10.1016/S0003-2670(02)00550-0
D. A. Ellis, J. W. Martin, D. C. G. Muir, and S. A. Mabury, (2000) Development of a 19F NMR method for analysing fluorinated acids in environmental water samples. Anal Chem. 72 726–731.Available: DOI: https://doi.org/10.1021/ac9910280
Okamoto (2001). Determination of fluorine in aqueous samples by electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS), Journal of Analytical Atomic Spectrometry. 16 539–541. Available: DOI: https://10.0.4.15/b101969o
S. Morés, G. C. Monteiro, F. D. S. Santos, E. Carasek, B. Welz (2011) Determination of Fluorine in Tea Using High-Resolution Molecular Absorption Spectrometry with Electrothermal Vaporisation of the Calcium Monofluoride CaF. 85 2681-2685. Available: DOI: https://doi.org/10.1016/j.talanta.2011.08.044
G. Andrzej, K. Andrzej R. Andrzej, P. Anna, G. L. Zdzisław and Ewa. B. (2020). Molecular absorption and mass spectrometry for complementary analytical study of fluorinated drugs in animal organisms. J. Anal. At Spectrom. 35 1840. Available:
DOI: https://doi.org/10.1039/D0JA00126K
L. D. Cláudio, C. S. Carolina, A. B Mark, and B. J. Bento. (2016). Fast Determination of Iron and Zinc in Hair and Human Serum Samples After Alkaline Solubilization by GF AAS. J. Braz. Chem. Soc. 27 119-126. Available: DOI: https://doi.org/10.5935/0103-5053.20150259
M. M. Bradford. (1976). A rapid and sensitive method for quantitating microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72 248– 254. DOI: Available: DOI: https://10.0.3.238/abio.1976.9999
D. O. Eugen, P. I. Jatlow, F. J. Fernandez, H. L. Kahn. (1973) Ultra-micro method for determination of iron in serum with the graphite furnace. Clin Chem 19 26-9. Available: PMID: 4689103. https://pubmed.ncbi.nlm.nih.gov/4689103/
O. Nil & A. Suleyman. (2016). Optimization and Application of a Slurry Sampling Method for Determining Total Fluorine in Flour Using a High-Resolution Continuum Source Graphite Furnace Molecular Absorption Spectrometer. Food Anal. Methods 9 2925–2932. Available: DOI: https://10.0.3.239/s12161-016-0488-4
G. Heike, W. Bernhard, W. E. Jürgen. (2010). Using a high-resolution continuum source spectrometer, optimizing fluorine determination via the molecular absorption of gallium mono- fluoride in a graphite furnace. Spectrochimica Acta Part B. 65 864–869. Available: DOI: https://doi.org/10.1016/j.sab.2010.08.003
E. K. Juliann, J. E. Merrill, G. Susanna, and H. B. Jan. (2008). Quantitation of 5-fluorouracil (5-FU) in human plasma by liquid chromatography/electrospray ionisation tandem mass spectrometry. Rapid Commun. Mass Spectrom. 22 224–230 Available:
DOI: https://10.0.3.234/rcm.3362
B. Barbara, R. Peter, S. Stefan, B. Claudia, A. Ursula, R. L. Carlo. (2013). LC-MS/MS method for simultaneous analysis of uracil, 5,6 5,6-dihydrouracil, 5-fluorouracil, and 5-fluoro-5,6-dihydrouracil in human plasma for cancer patients' therapeutic drug monitoring and toxicity prediction. Biomed. Chromatogr. 27 7–16. Available: DOI: https://10.0.3.234/bmc.2741
R. Petrilli, O. Eloy, F. Josimar, V. Renata, J. Robert. (2017). Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry - Anti-Cancer Agents), 17 301-30. https://doi.org/10.2174/1871520611009010001
X. Fengjing, W. Zhipeng, S. Xinhua, Z. Mengwei, C. Lili, L. Yanping, Y. Hongxia, G. Shouhong, L. Yan, and C. Wansheng. (2021). A Direct and Sensitive Method for Determination of 5-Fluorouracil in Colorectal Cancer
Cells: Evaluating the Effect | Of Stromal Cells on Drug Resistance of Cancer Cells. Journal of Analytical Methods in Chemistry Volume, Article ID 6689488, 9 pages Available: DOI: https://doi.org/10.1155/2021/6689488
J. Caldwell, I. Gardner, N. Swales. (1995). An introduction to drug disposition: the basic principles of absorption, distribution, metabolism, and excretion. Toxicol. Pathol. 23 102-14. Available: DOI: https://doi.org/10.1177/019262339502300202
H. Cordula, S. Stefan. (2019). In Vitro Research Reproducibility: Keeping Up High Standards. Front Pharmacol. 10 1484. Available:
DOI: https://10.0.13.61/fphar.2019.01484
A. Al-Ani, D. Toms, D. Kondro, J. Thundathil., Y. Yu, M. Ungrin. (2018). Oxygenation in cell culture: critical parameters for reproducibility are routinely not reported. PloS One 13 10. Available: PMID: 30325922. https://pubmed.ncbi.nlm.nih.gov/30325922
M. M. Wright, F. Ortega, R. Breitling, C Bendtsen., H. V. Westerhoff (2018). Rational cell culture optimisation enhances experimental reproducibility in cancer cell lines. Sci. Rep. 8 3029 Available: PMCID: PMC5813001. http://www.ncbi.nlm.nih.gov/pmc/articles/pmc5813001/
J. B. Houston, A. Galetin. (2003). Progress towards prediction of human pharmacokinetic parameters from in vitro technologies. Drug Metab. Rev. 35 393–415. Available: DOI: https://doi.org/10.1081/dmr-120026870
L. Auttpa, D. Abhijit, K. Arvind, C. Singh, S. Rupa, M. Amarnath, K. P. Devendra, D. Valentina, U. Arun, K. Ramesh, C. Anupama, K. D. Jaspreet, D. Saikat, V. Jayalakshmi, ́ M. P. Jose. (2023). Cancer chemotherapy and beyond: Status of drug candidates associated. 10 1367-1401. Available: PMID: 37397557. https://pubmed.ncbi.nlm.nih.gov/37397557
Analytical procedures and methods validation for drugs and biologics: guidance for industry. Silver Spring (MD): US Department of Health and Human Services, Food and Drug Administration;2015. https://www.fda.gov/files/drugs/published/Analytical-Procedures-and-Methods-Validation-for-Drugs-and-Biologics.pdf
A. Saghir, Z. Jia. (2023). Highlights on U.S. FDA-approved fluorinated drugs over the past five years (2018–2022). European Journal of Medicinal Chemistry 256 115476. Available: DOI: https://doi.org/10.1016/j.ejmech.2023.115476
H. Cheryl. (2020). Why Limiting PFAS In Drinking Water is a Challenge in the US. Chemicals and Engineer News 27 98. Available: https://www.watereducation.org/aquafornia-news/why-limiting-pfas-drinking-water-challenge-us
R. Berger, G. Resnati, P. Metrangolo, E. Weber, J. Hulliger, (2011) Organic fluorine compounds: an excellent opportunity for enhanced materials properties. Chem Soc Rev. 40 3496–35082. Available: DOI: https://doi.org/10.1039/C0CS00221F
M. Steele, C. Griffith, C. Duran. (2018) Monthly variations in perfluorinated compound concentrations in groundwater. Toxics.6,56. Available: DOI: https://doi.org/10.3390/toxics6030056