The Current Status, Challenges and Ways of Conservation Efforts of Bio diversity in Ethiopia
Main Article Content
Abstract
Ethiopia is one of the richest centres in faunal, floral, and microbial diversity in the world. Conservation practices and policies have been variably successful in recent years. This review paper was initiated to assess the status of Biodiversity, threats, and conservation efforts in Ethiopia. The causes of biodiversity loss, including habitat destruction, invasive alien species, over-harvesting of biodiversity resources, and species homogeneity in agriculture, are all essential biological drivers of the loss of biological diversity. All of these factors share a commonality: they are all human-driven. More research is needed in this area. It is also debatable and questioned whether existing biodiversity-conservation strategies provide adequate responses to these core causes of biodiversity loss and are capable of effectively counteracting the loss of biodiversity-related cultural values, biological species, and ecosystems. Conservation of genetic resources may be warranted for future genetic improvement of plants and livestock. Through bio prospecting, which adds value to biodiversity by undertaking exploration, assessment, and conservation, the country will reap impressive economic, social, and cultural benefits. This review is relevant to the study area, which engages in participatory community-based management techniques, and sector-based conservation and integration should minimise biodiversity conservation loss, while also incorporating social, cultural, and economic considerations. Finally, the findings suggest that a widespread perception among local communities is that biodiversity is facing challenges. This implies that engaging with local communities and incorporating their perspectives in biodiversity and ecosystem conservation strategies is crucial for the adequate protection and restoration of biodiversity.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
Abdubasit, Hussein. (2022). Factors of Biodiversity loss and conservation difficulties and opportunities in Ethiopia. Biodiversity Journal 13(1), p.p 145-154 https://www.biodiversityjournal.com/images/pubblicazioni/biodiversity-journal-2022/biodiversity-journal-2022-13-01/biodiversity-journal-2022-13-01_145-154.pdf
Agathokleous, E., Feng, Z., Oksanen, E., Sicard, P., Wang, Q., Saitanis, C. J., ...& Calatayud, V. (2020). Ozone affects plant, insect, and soil microbial communities, posing a threat to terrestrial ecosystems and biodiversity. Science Advances, 6, eabc1176.
DOI: https://doi.org/10.1126/sciadv.abc1176
Albert, J. S., Destouni, G., Duke-Sylvester, S. M., Magurran, A. E., Oberdorff, T., Reis, R. E., ...& Ripple, W. J. (2021). Scientists' Warning to Humanity on the Freshwater Biodiversity Crisis. Ambio, 50, 85–94. DOI: https://doi.org/10.1007/s13280-020-01318-8
Ashford, O. S., Kenny, A. J., Barrio Frojan, C. R., Bonsall, M. B., Horton, T., Brandt, A., ...& Rogers, A. D. (2018). Phylogenetic and functional evidence suggest that deep-ocean ecosystems are susceptible to environmental change and direct human disturbance—Proceedings of the Royal Society B, 285, 20180923. DOI: https://doi.org/10.1098/rspb.2018.0923
Baker, D. J., Hartley, A. J., Pearce-Higgins, J. W., Jones, R. G., & Willis, S. G. (2017). Neglected issues in using weather and climate information in ecology and biogeography. Diversity and Distributions, 23, 329–340. DOI: https://doi.org/10.1111/ddi.12527
Birhanu, A., Faris, G. (2022). The Current Status, Challenges and Efforts of Conservation of Biosphere Reserves in Ethiopia. International Journal of Advanced Multidisciplinary Research 9, pp. 48–69. https://ijarm.com/pdfcopy/2022/june2022/ijarm6.pdf
Blackmore, S. (2017). The future role of botanical gardens. Tropical Plant Collections. Scientia Danica. Series B, Biologica, 6, 285–297. http://publ.royalacademy.dk/backend/web/uploads/2020-02-14/AFL%206/SDB_6_00_00_2017_6005/SDB_6_24_00_2017_6028.pdf
8.Borrelli, P., Robinson, D. A., Panagos, P., Lugato, E., Yang, J. E., Alewell, C., Wuepper, D., Montanarella, L., & Ballabio, C. (2020). Land use and climate change impacts on global soil erosion by water (2015-2070). Proceedings of the National Academy of Sciences, 117(36), pp. 21994–22001. DOI: https://doi.org/10.1073/pnas.2001403117
Boopathi, N. M., & Hoffmann, L. V. 2016. Genetic diversity, erosion, and population structure in cotton genetic resources. In Genetic Diversity and Erosion in Plants: Case Histories, pp. 409–438. https://scholar.google.com.vn/citations?user=he54UO0AAAAJ&hl=th
Burger, P.A., Ciani, E., Faye, B. 2019. Old world camels in a modern world–a balancing act between conservation and genetic improvement. Anim Genet. 50, pp.598-612. DOI: https://doi.org/10.1111/age.12858
Butt, M. A., Zafar, M., Ahmed, M., Shaheen, S., & Sultana, S. 2021. Wetland Plants: A Source of Nutrition and Ethnomedicines. Springer Nature https://www.researchgate.net/publication/350085540_Wetland_Plants_A_Source_of_Nutrition_and_Ethno-medicines
Coates, D. J., Byrne, M., & Moritz, C. 2018. Genetic diversity and conservation units: Dealing with the species population continuum in the age of genomics. Frontiers in Ecology and Evolution, 6, pp. 165. DOI: https://doi.org/10.3389/fevo.2018.00165
Costello, M.J., Chaudhary, C. 2017. Marine biodiversity, biogeography, deep-sea gradients, and conservation. Curr Biol. 27, pp.511-527. https://www.sciencedirect.com/science/article/pii/S0921344923000447
Eekhout, J. P., & de Vente, J. 2022. The global impact of climate change on soil erosion and the potential for adaptation through soil conservation. Earth-Science Reviews, 226, 103921. DOI: https://doi.org/10.1016/j.earscirev.2022.103921
Elechi, J. O. G., Nwiyi, I. U., & Adamu, C. S. 2022. Global food system transformation for resilience.
DOI: http://dx.doi.org/10.5772/intechopen.102749
Faraji, L., & Karimi, M. 2022. Botanical gardens are valuable resources in the field of plant sciences. Biodiversity and Conservation, 31, pp.2905–2926. DOI: https://doi.org/10.1007/s10531-019-01926-1
Fogi S., (2024). Current status, Threats and Strategic solutions for Ethiopia’s Biosphere Reserves Journal of Forestry and Natural Resources, 3(1),12-22. https://journals.hu.edu.et/hu-journals/index.php/jfnr/article/view/987
Gasparatos, A., Doll, C. N., Esteban, M., Ahmed, A., & Olang, T. A. 2017. Renewable Energy and Biodiversity: Implications for Transitioning to a Green Economy. Renewable and Sustainable Energy Reviews, 70, pp.161–184 http://www.elsevier.com/locate/rser
Gurdak, D. J. 2018. Assessing Arapaima conservation and management through actionable research. State University of New York College of Environmental Science and Forestry. https://experts.esf.edu/esploro/outputs/graduate/Assessing-Arapaima-Conservation-and-Management-Through/99871079404826
Himshikha, Dobhal S, Ayate D, Lal P. 2022. The Influence of Anthropogenic Activities on the Biological Diversity of Forest Ecosystems. Newyork, Springer Publications, USA. DOI: http://dx.doi.org/10.1007/978-3-031-06443-2_12
Hoban, S., Archer, F. I., Bertola, L. D., Bragg, J. G., Breed, M. F., Bruford, M. W., ...& Grueber, C. E. 2022. Global genetic diversity status and trends: Towards a suite of Essential Biodiversity Variables (EBVs) for genetic composition. Biological Reviews, 97(4), pp.1511–1538. DOI: https://doi.org/10.1111/brv.12852
Jaisankar, I., Velmurugan, A., & Sivaperuman, C. 2018. Biodiversity conservation: Issues and strategies for the tropical islands. In Biodiversity and Climate Change Adaptation in Tropical Islands. Elsevier.
DOI: https://doi.org/10.1016/B978-0-12-813064-3.00019-3
Jonas, H. C. 2017. Indigenous peoples’ and communities' conserved territories and areas (ICCAs): Evolution in international biodiversity law. In the Elgar Encyclopedia of Environmental Law. Edward Elgar Publishing. https://parksjournal.com/wp-content/uploads/2017/11/PARKS-23.2-Jonas-et-al-10.2305IUCN.CH_.2017.PARKS-23-2HDJ.en_.pdf
Krishnan, S., & Novy, A. 2017. The Role of Botanic Gardens in the Twenty-First Century. CABI Reviews, pp.1–10.
DOI: https://doi.org/10.20933/40000102
Kolawole, A. S., & Iyiola, A. O. 2023. Environmental Pollution: Threats, Impact on Biodiversity, and Protection Strategies. In the sustainable utilisation and conservation of Africa’s biological resources and environment. Springer.
DOI: https://doi.org/10.1007/978-981-19-6974-4_14
Mackinnon, K., Smith, R., Dudley, N., Figgis, P., Hockings, M., Keenleyside, K., Laffoley, D., Locke, H., Sandwith, T., & Woodley, S. 2020. Strengthening the global system of protected areas post-2020: A perspective from the IUCN World Commission on Protected Areas. Parks Stewardship Forum. https://www.jstor.org/stable/48798948
Mariani, M., Casabianca, F., Cerdan, C., & Peri, I. 2021. Protecting Food Cultural Biodiversity: From Theory to Practice. Challenging the geographical indications and the slow food models. Sustainability, 13, pp. 5265. DOI: https://doi.org/10.3390/su13095265
Marques Mano Ivo Peres, S. 2017. Saving the Gene Pool: Genebanks and the Political Economy of Crop Germplasm Conservation. UCL (University College London). https://discovery.ucl.ac.uk/1547662/
Mascher, M., Schreiber, M., Scholz, U., Graner, A., Reif, J. C., & Stein, N. 2019. Genebank genomics bridges the gap between the conservation of crop diversity and plant breeding. Nature Genetics, 51, pp 1076–1081
DOI: https://doi.org/10.1038/s41588-019-0443-6
Meyer, HP. 2016. Biotechnology for the production of chemicals, intermediates, and pharmaceutical ingredients. Green Biocatalysis. Pp.643-674 http://www.diva-portal.org/smash/get/diva2:1135110/FULLTEXT01.pdf
Meyer, K. E., & Peng, M. W. 2016. Theoretical foundations of emerging economy business research. Journal of International Business Studies, 47, 3–22. DOI: http://dx.doi.org/10.1057/jibs.2015.34
Mukanov, Y., Chen, Y., Baisholanov, S., Amanambu, A. C., Is sanova, G., Abenova, A., Fang, G., & Abayev, N. 2019. Estimation of annual average soil loss using the revised universal soil loss equation (RUSLE) integrated in a geographical information system (GIS) of the Esil River Basin (ERB), Kazakhstan. Acta Geophysica, 67, pp.921–938. DOI: https://doi.org/10.1007/s11600-019-00288-0
Murad, M.O.F. 2021.Acquiring in situ high-resolution soil information using cost-effective technology.
DOI: https://doi.org/10.1007/s11600-019-00288-0
Nicholson, E., Watermeyer, K. E., Rowland, J. A., Sato, C. F., Stevenson, S. L., Andrade, A., Brooks, T. M., Burgess, N. D., Cheng, S.-T., & Grantham, H. S. 2021. Scientific foundations for an ecosystem goal, milestones, and indicators for the post-2020 global biodiversity framework. Nature Ecology &Evolution, 5, pp. 1338–1349. DOI: https://doi.org/10.1038/s41559-021-01538-5
Ogunkunle, T., Adewumi, A., & Adepoju, A. 2019. Biodiversity: An over-exploited yet underutilised natural resource for human existence and economic development. Environment & Ecosystem Science (EES), 3, pp.26–34. https://ssrn.com/abstract=4467179
Opoku, A. 2019. Biodiversity and the built environment: Implications for the Sustainable Development Goals (SDGs). Resour Conserv Recycl. 141, pp.1-7. https://www.sciencedirect.com/science/article/abs/pii/S0921344918303768
Panis, B., Nagel, M., & Van Den Houwe, I. 2020. Challenges and prospects for conserving crop genetic resources in field genebanks, in vitro collections, and/or in liquid nitrogen. Plants, 9, 1634 https://cgspace.cgiar.org/items/7d75d393-381f-435e-aec8-c43bdeac474e
Patra, A. K. 2022. Introductory agroforestry. CRC Press. https://www.taylorfrancis.com/books/mono/10.1201/978100
Perrino, E. V., & Wagensommer, R. P. 2021. Crop wild relatives (CWR) priority in Italy: Distribution, ecology, in situ and ex situ conservation, and expected actions. Sustainability, 13, pp.1682. DOI: https://doi.org/10.3390/su13041682
Piaggio, A. J., Segelbacher, G., Seddon, P. J., Alphey, L., Bennett, E. L., Carlson, R. H., Friedman, R. M., Kanavy, D., Phelan, R., & Redford, K. H. 2017. Is it time for synthetic biodiversity conservation? Trends in Ecology & Evolution, 32, pp.97–107.
DOI: https://doi.org/10.1016/j.tree.2016.10.016
Pilli, K., Dash, B., Dey, A., Patel, R., & Singh, P. 2023. Establishing linkages among changes in land use, vegetation, and croplands to arrest soil erosion and desertification. Enhancing the Resilience of Dryland Agriculture under a Changing Climate: Interdisciplinary and Convergence Approaches. Springer. https://scholar.google.com/citations?user=bhx9HGoAAAAJ&hl=en
Roos, E, Patel, M., Spangberg, J., Carlsson, G., Rydhmer, L.2016. Limiting livestock production to pasture and by-products in a search for sustainable diets. Food Policy. 58, pp.1-13 https://fenix.isa.ulisboa.pt/downloadFile/844497944586986/6-Livestock%20in%20EU.en_Cap1.pdf
Rounsevell, M. D., Harfoot, M., Harrison, P. A., Newbold, T., Gregory, R. D., & Mace, G. M. 2020. A biodiversity target based on species extinctions. Science, 368(6496), pp.1193–1195. DOI: https://doi.org/10.1126/science.aba6592http://dx.doi.org/10.17352/ojps.000026
Sewale, B., Mammo, S. (2022). Analysis of floristic composition and plant community types in Kenech Natural Forest, Kaffa Zone, Ethiopia. Trees, Forests and People,7, 100170 https://www.sciencedirect.com/science/article/pii/S2666719321001096
Silva, R., Lithgow, D., Esteves, LS., Martinez, M.L., Moreno-Casasola, P., Martell, R., Pereira, P., Mendoza, E., Campos-Cascaredo, A., Winckler Grez, P. 2017. Coastal Risk Mitigation through Green Infrastructure in Latin America. Proceedings of the Institution of Civil Engineers-Maritime Engineering. Thomas Telford Ltd. 170:39-54 https://eprints.bournemouth.ac.uk/28806/1/2017%20Maritime%20Engineering.pdf
Singh, V., Shukla, S., & Singh, A. 2021. The principal factors responsible for biodiversity loss are. Open Journal of Plant Science, 6(1), pp. 011–014. DOI: http://dx.doi.org/10.17352/ojps.000026
Symour, F., & Busch, J. 2016. Why forests? Why now?The science, economics, and politics of tropical forests and climate change. Brookings Institution Press https://www.cgdev.org/publication/why-forests-why-now-science-economics-and-politics-tropical-forests-and-climate-change
Tadese, S., Soromessa, T., Bekele, T., Gebeyehu, G. (2021) Woody Species Composition, Vegetation Structure, and Regeneration Status of Majang Forest Biosphere Reserves in Southwestern Ethiopia. International Journal of Forestry Research 8,1-22 https://www.scirp.org/reference/referencespapers?referenceid=3164454
Tesfu, F., Weidemariam, T., Asersie, M. (2018). Impact of human activities on biosphere reserve: A case study from Yayu Biosphere Reserve, Southwest Ethiopia. International Journal of Biodiversity and Conservation 10(7), pp.319-326.
DOI: https://doi.org/10.5897/IJBC2016.1005
Verma, K. S., Ul Haq, S., Kachhwaha, S., & Kothari, S. (2017). RAPD and ISSR marker assessment of genetic diversity in Citrullus colocynthis (L.) Schrad: A unique source of germplasm highly adapted to drought and high-temperature stress. 3 Biotech, 7(5), 1–24.
DOI: https://doi.org/10.1007/s13205 017-0872-9
Wang, W., & Li, J. 2021. In-situ conservation of biodiversity in China: Advances and prospects. Biodiversity Science, 29(2), pp. 133.
DOI:https://doi.org/10.17520/biods.2021013
Zegeye, H. 2017. In situ and ex situ conservation: Complementary approaches for maintaining biodiversity. International Journal of Research in Environmental Studies, https://www.researchgate.net/publication/320800480_In_situ_and_ex_situ_conservation_complementary_approaches_for_maintaining_biodiversity 4, pp.1–12.
Zerihun, M., Mohammedyasin, M. S., Sewnet, D., Adem, A. A., & Lakew, M. 2018. Assessment of Soil Erosion Using RUSLE, GIS, and Remote Sensing in NW Ethiopia. Geoderma Regional, 12, pp. 83–90. DOI: https://doi.org/10.1016/j.geodrs.2018.01.002