Utilizing 64-QAM for Enhanced Data Transmission in Underwater Optical Communication System
Main Article Content
Abstract
Underwater acoustic channels are affecting by many factors like time varying multipath propagation, Doppler spread, and salinity, which can greatly limit the quality of data rate and transmission distance. Underwater optical communication represents a crucial technology that supporting higher data rate, secure links and low latency. In his paper the use of 64- Quadrature Amplitude Modulation (64-QAM) in underwater optical communication systems is investigated. The system is designed to offer higher data rate than those of acoustic communication system. The proposed design achieve data rate of 10 Gbps over a challenging transmission distance of 50 km. In our study, a simulation technique is used to evaluate the performance of the proposed design in the underwater conditions, focusing on factors such as Bit Error Rate (BER), constellation diagram and Quality factor (Q-factor). The achieved BER is of about 10-10 with a minimum signal to noise ratio (SNR) of about 30dB. This paper provides valuable results for the design of next-generation underwater communication systems for applications such as pollution monitoring, oil control and oceanography research.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
Y. Wang et al., "Spectrally efficient non-orthogonal discrete multi-tone transmission for underwater wireless optical communication with low-complexity high performance ICI mitigation", J. Lightwave Technol., vol. 41, no. 19, pp. 6288-6299, (2023). DOI: https://doi.org/10.1109/JLT.2023.3279700.
Al-Halafi, A., Shihada, B., “UHD video transmission over bidirectional underwater wireless optical communication”, IEEE Photonics J. 10(2), 1–14 (2018). DOI: https://doi.org/10.1109/JPHOT.2018.2821695.
P. Krishnan, "Design of collision detection system for smart car using Li-Fi and ultrasonic sensor", IEEE Trans. Veh. Technol., vol. 67, no. 12, pp. 11 420-11 426,
Dec. (2018). DOI: https://doi.org/10.1109/TVT.2018.2870995.
Al-Halafi, A., et al.” Real-time video transmission over different underwater wireless optical channels using a directly modulated 520 nm laser diode”, IEEE/OSA J. Opt. Commun. Netw. 9(10), 826–832 (2017). DOI: https://doi.org/10.1364/JOCN.9.000826.
H. Kaushal and G. Kaddoum, "Underwater optical wireless communication", IEEE Access, vol. 4, pp. 1518-1547, (2016). DOI: https://doi.org/10.1109/ACCESS.2016.2552538.
Bai, J., et al.: PAPR reduction for IM/DD-OFDM signals in underwater wireless optical communication system. In: 2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA). IEEE (2018). DOI: https://doi.org/10.1109/ICIEA.2018.8398007.
Saeed, N., Celik, A., Al-Naffouri T. Y. and Alouini M., “Underwater optical wireless communications, networking, and localization: A survey”, Ad Hoc Netw., 94, (2019). DOI: https://doi.org/10.1016/j.adhoc.2019.101935.
Spagnolo, G., Cozzella, L., and Leccese, F., “Underwater optical wireless communications: Overview ”, Sensors, 20(8), (2020). DOI: https://doi.org/10.3390/s20082261.
Chen, M., et al.” Experimental demonstration of real-time high-level QAM-encoded direct-detection optical OFDM systems”, J. Lightw. Technol. 33(22), 4632–4639 (2015). DOI: https://doi.org/10.1109/JLT.2015.2458012.
L. K. Chen, Y. Shao, and Y. Di, “Underwater and water-air optical wireless communication”, J. Lightwave Technol. 40(5), 1440–1452 (2022). DOI: https://doi.org/10.1109/JLT.2021.3125140.
Chi, Y. C., et al.”450-nm GaN laser diode enables high-speed visible light communication with 9-Gbps QAM–OFDM”. Opt. Express 23(10), 13051–13059 (2015). DOI: https://doi.org/10.1364/OE.23.013051.
M. F. Ali, D. N. K. Jayakody, Y. A. Chursin, S. Affes and S. Dmitry, "Recent advances and future directions on underwater wireless communications", Archives Comput. Methods Eng., vol. 27, pp. 1-34, (2019). DOI: https://doi.org/10.1007/s11831-019-09354-8.
M. F. Ali, D. N. K. Jayakody, Y. A. Chursin, S. Affes, and S. Dmitry, “Recent advances and future directions on underwater wireless communications” Arch. Comput. Methods Eng. 27, 1379-1412 (2020). DOI: https://doi.org/10.1007/s11831-019-09354-8.
Karahroudi, M.K., et al.” Performance evaluation of perfect transmission of optical vortices in an underwater optical communication system”, Appl. Opt. 57(30), 9148–9154 (2018). DOI: https://doi.org/10.1364/AO.57.009148.
M. F. Ali, D. N. K. Jayakody et al., "Recent trends in underwater visible light communication (UVLC) systems", IEEE Access, vol. 10, pp. 22169-22225, (2022). DOI: https://doi.org/10.1109/ACCESS.2022.3150093.
P. Li, X. Han, W. Nie, C. Chang, G. Li, P. Liao, et al., "The research progress in underwater wireless optical communication technology", First International Conference on Spatial Atmospheric Marine Environmental Optics (SAME 2023), vol. 12706, pp. 211-221,(2023). DOI: https://doi.org/10.1117/12.2682867.
Z. Zeng, S. Fu, H. Zhang, Y. Dong and J. Cheng, "A survey of underwater optical wireless communications", IEEE Commun. Surv. Tut., vol. 19, no. 1, pp. 204-238, Jan.–Mar. (2017). DOI: https://doi.org/10.1109/COMST.2016.2618841.
Nakamura, K., et al.” Optical wireless transmission of 405 nm, 1.45 Gbit/s optical IM/DD-OFDM signals through a 4.8 m underwater channel “, Opt. Express 23(2), 1558–1566 (2015). DOI: https://doi.org/10.1364/OE.23.001558.
Anees, S., Baruah, S. R., & Sarmah, P. (2019). Hybrid RF-FSO System Cascaded with UWOC Link. In International Journal of Innovative Technology and Exploring Engineering (Vol. 8, Issue 10, pp. 2065–2069). DOI: https://doi.org/10.35940/ijitee.j9330.0881019
Gupta, K., Agarwal, K., & Babu, Y. (2019). Data Communication Security Issues of Wi-Fi over Li-Fi. In International Journal of Recent Technology and Engineering (IJRTE) (Vol. 8, Issue 3, pp. 1977–1981). DOI: https://doi.org/10.35940/ijrte.c4489.098319
Konstantinov, I. S., Vasyliev, G. S., Kuzichkin, O. R., Surzhik, D. I., Kurilov, I. A., & Lazarev, S. A. (2019). AUV Link Mobile Ad-Hoc Network Examination. In International Journal of Engineering and Advanced Technology (Vol. 8, Issue 5s3, pp. 512–517). DOI: https://doi.org/10.35940/ijeat.e1063.0785s319
Malviya, Dr. L., Chawla, Prof. M. P. S., & Verma, Prof. A. (2021). Present to Future Antennas for Wireless Communication. In International Journal of Innovative Science and Modern Engineering (Vol. 7, Issue 1, pp. 1–8). DOI: https://doi.org/10.35940/ijisme.a1278.027121
Chakraborty, A. (2024). A Comparative Study of Mean Square Error, Dimensions, Signal to Noise Ratio of Colored and Non-Colored Clustered Original Images Along with Compressed Version After the Image Segmentation and Filtering Method. In Indian Journal of Image Processing and Recognition (Vol. 4, Issue 6, pp. 1–4). DOI: https://doi.org/10.54105/ijipr.f1032.04061024