Mars Explorer Experiments: Ideas from Data Mining Point of View

Main Article Content

Dr. Mohammed Ali Mohammed
Dr. Nadhim Azeez Sayel
Noor Muneam Abbas

Abstract

In the context of the "Mars Explorer Experiments," a set of autonomous agents (vehicles) must navigate an unknown, obstacle-filled terrain to locate and collect rock samples, with limited communication between agents and no prior detailed map of the planet. This paper explores the application of data mining techniques in the development of autonomous vehicle control architectures for Mars exploration, specifically focused on the task of collecting precious rock samples according to three types of agents (Cooperative Agents, Non-Cooperative Agents, Subsumption Architecture ) through describing the agent with the data mining point of view (problem statement in agent, solution using data mining algorithms, discussion problem and solution from data mining point of view). A significant portion of the paper discusses how data mining approaches such as clustering, reinforcement learning, anomaly detection, and pattern mining can be employed to improve agent coordination, exploration strategies, and real-time decision-making in dynamic and uncertain environments. Incorporating data mining algorithms into 'Mars exploration experiments' shows a hopeful way to boost the performance and decision-making abilities of autonomous agents on Mars. The paper shows that the data mining algorithms are not just beneficial but essential in developing intelligent, cooperative, and autonomous systems for Mars exploration vehicles.

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
Dr. Mohammed Ali Mohammed, Dr. Nadhim Azeez Sayel, and Noor Muneam Abbas , Trans., “Mars Explorer Experiments: Ideas from Data Mining Point of View”, IJDM, vol. 5, no. 1, pp. 1–6, May 2025, doi: 10.54105/ijdm.A1643.05010525.
Section
Articles

How to Cite

[1]
Dr. Mohammed Ali Mohammed, Dr. Nadhim Azeez Sayel, and Noor Muneam Abbas , Trans., “Mars Explorer Experiments: Ideas from Data Mining Point of View”, IJDM, vol. 5, no. 1, pp. 1–6, May 2025, doi: 10.54105/ijdm.A1643.05010525.
Share |

References

M. R. Lorca, “Autonomous robotic capabilities in space exploration: From Mars to beyond,” [Online]. Available: DOI: https://doi.org/10.53759/9852/JRS202402004

W. van der Hoek and M. Wooldridge, “Towards a logic of rational agency,” Logic J. IGPL, vol. 11, no. 2, pp. 135–159, 2003. [Online]. Available: DOI: https://doi.org/10.1093/jigpal/11.2.135

A. Dorri, S. S. Kanhere, and R. Jurdak, “Multi-agent systems: A survey,” IEEE Access, vol. 6, pp. 28573–28593, 2018. [Online]. Available: DOI: https://doi.org/10.1109/ACCESS.2018.2831228

Toupet, O., Del Sesto, T., Ono, M., Myint, S., Vander Hook, J., & McHenry, M. “A ROS-based simulator for testing the enhanced autonomous navigation of the Mars 2020 rover”. In 2020 IEEE Aerospace Conference (pp. 1-11). IEEE. (2020, March). DOI: https://doi.org/10.1109/AERO47225.2020.9172345.

A. Rankin et al., “Mars Curiosity rover mobility trends during the first 7 years,” J. Field Robot., vol. 38, no. 5, pp. 759–800, 2021. [Online]. Available: DOI: https://doi.org/10.1002/rob.22011

S. Daftry et al., “MLNav: Learning to safely navigate on Martian terrains,” IEEE Robot. Autom. Lett., vol. 7, no. 2, pp. 5461–5468, 2022. [Online]. Available: DOI: https://doi.org/10.1109/LRA.2022.3156654

D. S. Bass, R. C. Wales, and V. L. Shalin, “Choosing Mars time: Analysis of the Mars Exploration Rover experience,” in Proc. IEEE Aerosp. Conf., 2005, pp. 4174–4185. [Online]. Available: DOI: https://doi.org/10.1109/AERO.2005.1559722

M. Eppes, A. Willis, and B. Zhou, “Collecting field data from Mars Exploration Rover Spirit and Opportunity images: Development of 3-D visualization and data-mining software,” AGU Fall Meeting Abstracts, 2010. Available: https://ui.adsabs.harvard.edu/abs/2010AGUFMIN33B1303E

S. Wang and Y. Chen, “A novel method to extract rocks from Mars images,” CoRR, abs/1403.3083, 2014. [Online]. Available: DOI: https://doi.org/10.1049/cje.2015.07.003

K. Hundman et al., “Detecting spacecraft anomalies using LSTMs and nonparametric dynamic thresholding,” in Proc. 24th ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., 2018, pp. 387–396. [Online]. Available: DOI: https://doi.org/10.1145/3219819.3219845

A. Momennasab, “Machine learning for Mars exploration,” arXiv preprint, arXiv:2111.11537, 2021. [Online]. Available: DOI: https://doi.org/10.48550/arXiv.2111.11537

C. Lee and J. Hogan, “Automated crater detection with human-level performance,” Comput. Geosci., vol. 147, p. 104645, 2021. [Online]. Available: DOI: https://doi.org/10.1016/j.cageo.2020.104645

D. Noever and S. E. M. Noever, “Rock hunting with Martian machine vision,” arXiv preprint, arXiv:2104.04359, 2021. [Online]. Available: DOI: https://doi.org/10.48550/arXiv.2104.04359

J. A. Pohly et al., “Data-driven CFD scaling of bioinspired Mars flight vehicles for hover,” Acta Astronaut., vol. 180, pp. 545–559, 2021. [Online]. Available: DOI: https://doi.org/10.1016/j.actaastro.2020.12.037

A. Petrovsky et al., “The two-wheeled robotic swarm concept for Mars exploration,” Acta Astronaut., vol. 194, pp. 1–8, 2022. [Online]. Available: DOI: https://doi.org/10.1016/j.actaastro.2022.01.025

E. Karpovich et al., “Long-endurance Mars exploration flying vehicle: A project brief,” Aerospace, vol. 10, no. 11, p. 965, 2023. [Online]. Available: DOI: https://doi.org/10.3390/aerospace10110965

M. Wooldridge, An Introduction to Multiagent Systems, 2nd ed. Hoboken, NJ: Wiley, 2009. ISBN: 978-0-470-51946-2. https://www.wiley.com/en-us/An+Introduction+to+MultiAgent+Systems%2C+2nd+Edition-p-9780470519462

M. Pagliari, V. Chambon, and B. Berberian, “What is new with Artificial Intelligence? Human–agent interactions through the lens of social agency,” Front. Psychol., vol. 13, p. 954444, 2022. [Online]. Available: DOI: https://doi.org/10.3389/fpsyg.2022.954444

S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 3rd ed. Boston, MA: Pearson, 2016. ISBN:978-0-13-604259-4. http://repo.darmajaya.ac.id/5272/1/Artificial%20Intelligence-A%20Modern%20Approach%20%283rd%20Edition%29%20%28%20PDFDrive%20%29.pdf

R. C. Cardoso and A. Ferrando, “A review of agent-based programming for multi-agent systems,” Computers, vol. 10, no. 2, p. 16, 2021. [Online]. Available: DOI: https://doi.org/10.3390/computers10020016

J. Xu, D. Pushp, K. Yin, and L. Liu, “Decision-making among bounded rational agents,” in Distrib. Auton. Robot. Syst., Springer, Cham, 2022, pp. 273–285. [Online]. Available: DOI: https://doi.org/10.1007/978-3-031-51497-5_20

W. Schwarting, J. Alonso-Mora, and D. Rus, “Planning and decision-making for autonomous vehicles,” Annu. Rev. Control Robot. Auton. Syst., vol. 1, pp. 317–343, 2018. [Online]. Available: DOI: https://doi.org/10.1146/annurev-control-060117-105157

L. Steels, “Cooperation between distributed agents through self-organization,” in Y. Demazeau and J.-P. Miiller, Eds., Decentralized AI: Proc. 1st Eur. Workshop on Modelling Autonomous Agents in a Multi-Agent World, Amsterdam: Elsevier, 1990, pp. 175–196. DOI: https://doi.org/ 10.1109/IROS.1990.262534

Tardisman5197, mas-cw, GitHub repository, Mar. 23, 2025. [Online]. Available: https://github.com/tardisman5197/mas-cw

S. Suh, Practical Applications of Data Mining. Boston, MA: Jones & Bartlett, 2012. ISBN:978-0-7637-8587-1. https://www.oreilly.com/library/view/practical-applications-of/9780763785871/

K. L. Tsui, V. Chen, W. Jiang, F. Yang, and C. Kan, “Data mining methods and applications,” in Springer Handbook of Engineering Statistics, London: Springer, 2023, pp. 797–816. [Online]. Available: DOI: https://doi.org/10.1007/978-1-4471-7503-2_38

Shekh, N. A., Dwivedi, Dr. V., & Pabari, Dr. J. P. (2019). RF Propagation Model for Wireless Sensor Network of MARs. In International Journal of Engineering and Advanced Technology (Vol. 9, Issue 2, pp. 4439–4444). DOI: https://doi.org/10.35940/ijeat.b3884.129219

Valliappan C, K., & R, V. (2021). Autonomous Indoor Navigation for Mobile Robots. In International Journal of Innovative Technology and Exploring Engineering (Vol. 10, Issue 7, pp. 122–126). DOI: https://doi.org/10.35940/ijitee.g9038.0510721

Varghese, A., Marri, M., & Chacko, Dr. S. (2023). Investigation of an Autonomous Vehicle’s using Artificial Neural Network (ANN). In Indian Journal of Artificial Intelligence and Neural Networking (Vol. 3, Issue 6, pp. 1–11). DOI: https://doi.org/10.54105/ijainn.f1072.103623

Kosser, F., & Kumar, N. (2023). Autonomous Robot Navigation in Known Environment. In International Journal of Recent Technology and Engineering (IJRTE) (Vol. 12, Issue 2, pp. 128–132). DOI: https://doi.org/10.35940/ijrte.f7505.0712223

Chitroda, M., & Patle, Dr. B. K. (2023). A Review on Technologies in Robotic Gripper. In International Journal of Advanced Engineering and Nano Technology (Vol. 10, Issue 5, pp. 1–5). DOI: https://doi.org/10.35940/ijaent.c7232.0511523

Most read articles by the same author(s)

<< < 1 2 3 > >>