Real-Time Forecasting of Stock Trends using Particle Swarm Optimization

Main Article Content

Suraj Kumar Sahu
Dr. Zubair Ahmed Khan
Dr. Abhishek Guru
Ankita Singh Baghel
Divya Soni

Abstract

The traditional neural network algorithm for stock price forecasting is prone to local optima. To enhance the accuracy of stock price forecasting and reduce forecasting time, this paper introduces an improved Particle Optimisation Neural Network Algorithm. By integrating neural networks and particle swarm optimisation algorithms, a more effective forecasting model is constructed that better reflects the dynamic changes in stock prices. Meanwhile, introducing chaos-interference and mutation factors can enhance the algorithm's diversity, thereby further improving forecast accuracy and stability. This method presents a novel solution for research and application in stock price forecasting, offering a valuable reference for relevant practitioners.

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
Suraj Kumar Sahu, Dr. Zubair Ahmed Khan, Dr. Abhishek Guru, Ankita Singh Baghel, and Divya Soni , Trans., “Real-Time Forecasting of Stock Trends using Particle Swarm Optimization”, IJEF, vol. 5, no. 2, pp. 26–30, Nov. 2025, doi: 10.54105/ijef.A2621.05021125.
Section
Articles

How to Cite

[1]
Suraj Kumar Sahu, Dr. Zubair Ahmed Khan, Dr. Abhishek Guru, Ankita Singh Baghel, and Divya Soni , Trans., “Real-Time Forecasting of Stock Trends using Particle Swarm Optimization”, IJEF, vol. 5, no. 2, pp. 26–30, Nov. 2025, doi: 10.54105/ijef.A2621.05021125.
Share |

References

Fischer, T., & Krauss, C. 2023. Long short-term memory networks for financial market prediction. Journal of Economic Dynamics and Control, 139, DOI: https://doi.org/10.1016/j.jedc.2022.104559

Li, F., & Xu, Y. 2023. Real-time high-frequency data analysis using the Kalman Filter. Quantitative

Finance, 21(4), 567-580. DOI: https://doi.org/10.1155/2024/4418858

Kumar, R., Singh, S., & Verma, P. 2022. PSO-based trading strategy optimization. Journal of Trading Strategies, 17(2), 117-136.

DOI: https://doi.org/10.1145/3696952.3696996

Zheng J, Zhang Z, Zou J, et al.2022. A dynamic multi-objective particle swarm optimization algorithm based on adversarial decomposition and neighbourhood evolution[J]. Swarm and Evolutionary Computation, 69: 100987. DOI: https://doi.org/10.1016/j.swevo.2021.100987

Bas, Eren, Erol Egrioglu, and Emine Kolemen. 2022. Training a simple recurrent deep artificial neural network for forecasting using particle swarm. Optimization. Granular Computing 7.2:411-420. DOI: http://doi.org/10.1007/s41066-021-00274-2

Adamu A, Abdullahi M, Junaidu S B, et al. 2021. A hybrid particle swarm optimization with crow search algorithm for feature selection[J]. Machine Learning with Applications, 6: 100108. DOI: https://doi.org/10.1016/j.mlwa.2021.100108

Bootkrajang J, Kabán .2021. A. Label-noise robust logistic regression and its applications[M]. Machine Learning and Knowledge Discovery in Databases. Springer Berlin Heidelberg. DOI: http://doi.org/10.1007/978-3-030-86523-8_11

Bento M E C. 2021. A hybrid particle swarm optimization algorithm for the wide-area damping control design[J]. IEEE Transactions on Industrial Informatics, 18(1): 592-599. DOI: http://dx.doi.org/10.1016/j.ijepes.2019.03.001

Lee, S., Kim, H., & Park, J. 2020. Support vector machines for stock market prediction. Expert Systems with Applications, 160, 113-129. DOI: http://dx.doi.org/10.1016/j.eswa.2009.02.038

Sahu, Suraj Kumar, and Sandeep Kumar Gonnade. 2013. “QR Code and Application in India.” International Journal of Recent Technology and Engineering 2 (3): 26–28.

https://www.ijrte.org/wp-content/uploads/papers/v2i3/C0692072313.pdf

Lohrmann C,Luukka P .2019. Classification of intraday S&P500returnswitharandomforest[J] International Journal of Forecasting,35(1):390-407. DOI: https://doi.org/10.1016/j.eswa.2015.07.002

Kwon O, Tseng K, Tjung L.2017. Time-series and neural network forecasts of daily stock prices [J]. Investment Management & Financial Innovations, 9(1):32-54. DOI: https://doi.org/10.1016/j.ijforecast.2018.01.002

Strobelt H, Gehrmann S, Huber B, et al. 2016. Visual Analysis of Hidden State Dynamics in Recurrent Neural Networks[J]. IEEE Transactions on Visualization &Computer Graphics, PP (99):1-1. DOI: http://dx.doi.org/10.1109/TVCG.2017.2744158

Kim M, Sayama H. Predicting stock market movements using network science: an information theoretic approach[J]. Applied Network Science, 2017, 2(1):35. DOI: https://doi.org/10.1109/TVCG.2016.2598498

Fama, E.F. 1970."Efficient capital markets: A review of theory and empirical work", Journal of Finance, 25:383-417.

http://efinance.org.cn/cn/fm/Efficient%20Capital%20Markets%20A%20Review%20of%20Theory%20and%20Empirical%20Work.pdf

Rather, A. M., Agarwal, A., & Sastry, V. 2015. A recurrent neural network and a hybrid model for the prediction of stock returns. Expert Systems with Applications, 42(6),3234–3241. DOI: https://doi.org/10.2307/2325486

Rani, R., Gupta, S., & Kumar, V. 2020. A hybrid genetic algorithm and support vector machine for stock market prediction. Expert Systems with Applications, 44(5), 234-245. DOI: https://doi.org/10.1016/j.eswa.2014.09.016

Most read articles by the same author(s)

1 2 3 4 5 6 7 > >>