Valorising Desizing Textile Effluent
Main Article Content
Abstract
Textile wet processing is an energy-intensive and water-consuming process. Right from pretreatment to finishing several basic, auxiliary, and specialty chemicals are used during the manufacturing of textiles. There are two main processes, namely sizing and desizing which are mutually responsible for increasing the Biological Oxygen Demand (BOD) and Chemical Oxygen Demand (COD) values of liquid effluent emerging after the pretreatment process. This review describes in detail the types of commercial sizing agents depending on their origin, performance, and environmental profile. The review further throws light on the possibilities of extracting energy-efficient, value-added products from the residual waste and effluent. Such recovery mechanisms can enhance sustainability and bring circularity to textile wet processing.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
R. Shrivastava and N. K. Singh, ‘Assessment of water quality of textile effluent and its treatment by using coagulants and plant material’, Mater. Today Proc., vol. 43, pp. 3318–3321, 2021, doi: 10.1016/j.matpr.2021.02.373. https://doi.org/10.1016/j.matpr.2021.02.373
A. Rehman et al., ‘Eco-friendly textile desizing with indigenously produced amylase from Bacillus cereus AS2’, Sci. Rep., vol. 13, no. 1, p. 11991, Jul. 2023, doi: 10.1038/s41598-023-38956-3. https://doi.org/10.1038/s41598-023-38956-3
W. Yan, L. Yin, M. Zhang, M. Zhang, and X. Jia, ‘Gelatinization, Retrogradation and Gel Properties of Wheat Starch–Wheat Bran Arabinoxylan Complexes’, Gels, vol. 7, no. 4, p. 200, Nov. 2021, doi: 10.3390/gels7040200. https://doi.org/10.3390/gels7040200
S. Bismark, Z. Zhifeng, and T. Benjamin, ‘Effects of differential degree of chemical modification on the properties of modified starches: Sizing’, J. Adhes., vol. 94, no. 2, pp. 97–123, Jan. 2018, doi: 10.1080/00218464.2016.1250629. https://doi.org/10.1080/00218464.2016.1250629
C. Chiu and D. Solarek, ‘Modification of Starches’, in Starch, Elsevier, 2009, pp. 629–655. doi: 10.1016/B978-0-12-746275-2.00017-3. https://doi.org/10.1016/B978-0-12-746275-2.00017-3
H. Nawaz, R. Waheed, M. Nawaz, and D. Shahwar, ‘Physical and Chemical Modifications in Starch Structure and Reactivity’, in Chemical Properties of Starch, M. Emeje, Ed., IntechOpen, 2020. doi: 10.5772/intechopen.88870. https://doi.org/10.5772/intechopen.88870
K. Bashir and M. Aggarwal, ‘Physicochemical, structural and functional properties of native and irradiated starch: a review’, J. Food Sci. Technol., vol. 56, no. 2, pp. 513–523, Feb. 2019, doi: 10.1007/s13197-018-3530-2. https://doi.org/10.1007/s13197-018-3530-2
‘Textile size and preparation method thereof’, CN101831805B
R. Ni et al., ‘Recent advances of proteins extracted from agricultural and livestock wastes in biodegradable textile sizing applications’, Process Saf. Environ. Prot., vol. 177, pp. 699–710, Sep. 2023, doi: 10.1016/j.psep.2023.07.053. https://doi.org/10.1016/j.psep.2023.07.053
D. Hubei, ‘Decon-What is the best sizing chemical’, What is the Best Sizing Chemical for Textile? [Online]. Available: https://www.polyestermfg.com/what-is-the-best-sizing-chemical-for-textile/
B. Sarkodie, Q. Feng, C. Xu, and Z. Xu, ‘Desizability and Biodegradability of Textile Warp Sizing Materials and Their Mechanism: A Review’, J. Polym. Environ., vol. 31, no. 8, pp. 3317–3337, Aug. 2023, doi: 10.1007/s10924-023-02801-5. https://doi.org/10.1007/s10924-023-02801-5
A. Kukrety, R. K. Singh, P. Singh, and S. S. Ray, ‘Comprehension on the Synthesis of Carboxymethylcellulose (CMC) Utilizing Various Cellulose Rich Waste Biomass Resources’, Waste Biomass Valorization, vol. 9, no. 9, pp. 1587–1595, Sep. 2018, doi: 10.1007/s12649-017-9903-3. https://doi.org/10.1007/s12649-017-9903-3
A. Athalye, ‘Desizers are Deciders’, Fibre2fashion.
Z. Jin, M. Qiu, J. Wen, Y. Shen, X. Chen, and Y. Fan, ‘Construction of ZrO2-CeO2 composite UF membranes for effective PVA recovery from desizing wastewater’, Sep. Purif. Technol., vol. 306, p. 122672, Feb. 2023, doi: 10.1016/j.seppur.2022.122672. https://doi.org/10.1016/j.seppur.2022.122672
M. Maqsood, M. I. Khan, K. Shaker, M. Umair, and Y. Nawab, ‘Recycling of warp size materials and comparison of yarn mechanical properties sized with recycled materials and virgin materials’, J. Text. Inst., vol. 108, no. 1, pp. 84–88, Jan. 2017, doi: 10.1080/00405000.2016.1153875. https://doi.org/10.1080/00405000.2016.1153875
‘Preparation method of foam inhibiting and antifoaming agent for polyvinyl alcohol (PVA) aqueous solution’, CN102675657B
C. Rolsky and V. Kelkar, ‘Degradation of Polyvinyl Alcohol in US Wastewater Treatment Plants and Subsequent Nationwide Emission Estimate’, Int. J. Environ. Res. Public. Health, vol. 18, no. 11, p. 6027, Jun. 2021, doi: 10.3390/ijerph18116027. https://doi.org/10.3390/ijerph18116027
X. Zha, M. S. Sadi, Y. Yang, T. Luo, and N. Huang, ‘Introduction of poly(acrylic acid) branch onto acetate starch for polyester warp sizing’, J. Text. Inst., vol. 112, no. 2, pp. 273–285, Feb. 2021, doi: 10.1080/00405000.2020.1786260. https://doi.org/10.1080/00405000.2020.1786260
W. Li, Y. Wu, Z. Xu, Q. Ni, J. Xing, and X. Tao, ‘Blending caproylated starch with poly(acrylic acid)-g-protein-g-poly(methyl acrylate) as an adhesive material to improve the adhesion of starch to PLA fibers’, Int. J. Adhes. Adhes., vol. 102, p. 102668, Oct. 2020, doi: 10.1016/j.ijadhadh.2020.102668. https://doi.org/10.1016/j.ijadhadh.2020.102668
E. Jin, Z. Zhu, and Y. Yang, ‘Structural effects of glycol and benzenedicarboxylate units on the adhesion of water‐soluble polyester sizes to polyester fibers’, J. Text. Inst., vol. 101, no. 12, pp. 1112–1120, Dec. 2010, doi: 10.1080/00405000903462217. https://doi.org/10.1080/00405000903462217
J. Lu, M. Li, Y. Li, X. Li, Q. Gao, and M. Ge, ‘Synthesis and sizing performances of water-soluble polyester based on bis(2-hydroxyethyl) terephthalate derived from depolymerized waste poly (ethylene terephthalate) fabrics’, Text. Res. J., vol. 89, no. 4, pp. 572–579, Feb. 2019, doi: 10.1177/0040517517750652. https://doi.org/10.1177/0040517517750652
G. Chen, L. Lei, P. L. Yue, and P. Cen, ‘Treatment of Desizing Wastewater Containing Poly(vinyl alcohol) by Wet Air Oxidation’, Ind. Eng. Chem. Res., vol. 39, no. 5, pp. 1193–1197, May 2000, doi: 10.1021/ie990528g. https://doi.org/10.1021/ie990528g
A. Azanaw, B. Birlie, B. Teshome, and M. Jemberie, ‘Textile effluent treatment methods and eco-friendly resolution of textile wastewater’, Case Stud. Chem. Environ. Eng., vol. 6, p. 100230, Dec. 2022, doi: 10.1016/j.cscee.2022.100230. https://doi.org/10.1016/j.cscee.2022.100230
M. Behera, J. Nayak, S. Banerjee, S. Chakrabortty, and S. K. Tripathy, ‘A review on the treatment of textile industry waste effluents towards the development of efficient mitigation strategy: An integrated system design approach’, J. Environ. Chem. Eng., vol. 9, no. 4, p. 105277, Aug. 2021, doi: 10.1016/j.jece.2021.105277. https://doi.org/10.1016/j.jece.2021.105277
K. Agrawal, A. Bhatt, N. Bhardwaj, B. Kumar, and P. Verma, ‘Integrated Approach for the Treatment of Industrial Effluent by Physico-chemical and Microbiological Process for Sustainable Environment’, in Combined Application of Physico-Chemical & Microbiological Processes for Industrial Effluent Treatment Plant, M. Shah and A. Banerjee, Eds., Singapore: Springer Singapore, 2020, pp. 119–143. doi: 10.1007/978-981-15-0497-6_7. https://doi.org/10.1007/978-981-15-0497-6_7
R. Aggarwal, T. Dutta, and J. Sheikh, ‘Extraction of amylase from the microorganism isolated from textile mill effluent vis a vis desizing of cotton’, Sustain. Chem. Pharm., vol. 14, p. 100178, Dec. 2019, doi: 10.1016/j.scp.2019.100178. https://doi.org/10.1016/j.scp.2019.100178
P. Kumar, B. Prasad, I. M. Mishra, and S. Chand, ‘Catalytic thermal treatment of desizing wastewaters’, J. Hazard. Mater., vol. 149, no. 1, pp. 26–34, Oct. 2007, doi: 10.1016/j.jhazmat.2007.03.051. https://doi.org/10.1016/j.jhazmat.2007.03.051
K. Opwis et al., ‘Generation of methane from textile desizing liquors’, Eng. Life Sci., vol. 10, no. 4, pp. 293–296, Aug. 2010, doi: 10.1002/elsc.200900082. https://doi.org/10.1002/elsc.200900082
C.-H. Lay, S.-Y. Kuo, B. Sen, C.-C. Chen, J.-S. Chang, and C.-Y. Lin, ‘Fermentative biohydrogen production from starch-containing textile wastewater’, Int. J. Hydrog. Energy, vol. 37, no. 2, pp. 2050–2057, Jan. 2012, doi: 10.1016/j.ijhydene.2011.08.003. https://doi.org/10.1016/j.ijhydene.2011.08.003
C.-Y. Lin, M.-L. T. Nguyen, and C.-H. Lay, ‘Starch-containing textile wastewater treatment for biogas and microalgae biomass production’, J. Clean. Prod., vol. 168, pp. 331–337, Dec. 2017, doi: 10.1016/j.jclepro.2017.09.036. https://doi.org/10.1016/j.jclepro.2017.09.036
S. K. B. C. Panda, K. Sen, and S. Mukhopadhyay, ‘A sustainable desizing process for PVA-sized cotton fabric using ultraviolet C’, Text. Res. J., vol. 93, no. 11–12, pp. 2620–2632, Jun. 2023, doi: 10.1177/00405175221146746. https://doi.org/10.1177/00405175221146746
N, Srimathi., M, Subiksha., J, Abarna., & T, Niranjana. (2020). Biological Treatment of Dairy Wastewater using Bio Enzyme from Citrus Fruit Peels. In International Journal of Recent Technology and Engineering (IJRTE) (Vol. 9, Issue 1, pp. 292–295). https://doi.org/10.35940/ijrte.a1530.059120
Purba, L. D. A., Abdullah*, N., Ab Halim, M. H., Yuzir, A., & Zamyadi, A. (2019). Performance of Aerobic Granular Sludge for Domestic Wastewater Treatment. In International Journal of Innovative Technology and Exploring Engineering (Vol. 8, Issue 12, pp. 3851–3854). https://doi.org/10.35940/ijitee.l3360.1081219
Soun, B., Saini, Dr. H. K., & Brar, Dr. K. K. (2023). Study on Properties of Sisal-Cotton Union Fabrics Developed in Handloom and Power-Loom for Textile Application. In Indian Journal of Fibre and Textile Engineering (Vol. 3, Issue 1, pp. 1–4). https://doi.org/10.54105/ijfte.a2405.053123