Spooky Black Holes and Gravitomagnetism
Main Article Content
Abstract
Wide spread misconceptions about the reality of space curvature in General Relativity (GR) and their relevance in connection to the existence of black holes are revisited. The mean life of proposed black holes is estimated and their practical non existence is emphasized. The repulsive effect of gravitational self energy is underlined. The relevance of gravitomagnetism to account for alleged black hole effects is stressed.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
Gupta, R. & Gupta, M. Analytical study of nanomaterials under high pressure. Material Science Research India 19(3), 170-176; http://dx.doi.org/10.13005/msri/190308 (2022).
Gupta, R. & Gupta, M. Second-order bulk modulus with thermal expansivity for nanomaterials. Bulletin of Materials Science 47(2) 106; https://doi.org/10.1007/s12034-024-03211-6 (2024).
Kumar, M. Thermal expansivity and equation of state up to transition pressure and melting temperature: NaCl as an example. Solid state communications 92(5), 463-466; https://doi.org/10.1016/0038-1098(94)90529-0 (1994).
Kim, K. Lee, S. & Ahn, H. Observation of nucleation effect on crystallization in lithium aluminosilicate glass by viscosity measurement. Journal of Non-Crystalline Solid 336(3), 195-201; https://doi.org/10.1016/j.jnoncrysol.2004.01.001 (2004).
Musić, S. Czako-Nagy, I. Salaj-Obelić, I. & Ljubešić, N. Formation of α-Fe2O3 particles in aqueous medium and their properties. Materials letters 32(5), 301-305; https://doi.org/10.1016/S0167-577X(97)00051-7 (1997).
Peng, Y. & Zhang, L. Investigation of microconstructure of nanomaterial Fe2O3 by positron lifetime spectroscopy. Acta Physica Sinica 43(7), 1208-1216; https://doi.org/10.7498/aps.43.1208 (1994)
Takagi, M. J. Electron-Diffraction Study of Liquid-Solid Transition of Thin Metal Films. Journal of the Physical Society of Japan 9(3), 359-363; https://doi.org/10.1143/JPSJ.9.359 (1954).
Hasegawa, M. Watabe, M. & Hoshino, K. A theory of melting in metallic small particles. Journal of Physics F: Metal Physics 10(4), 619; https://doi.org/10.1088/0305-4608/10/4/013 (1980).
Shi, F.G. Size dependent thermal vibrations and melting in nanocrystals. Journal of materials research 9, 1307-1313; https://doi.org /10.1557/JMR.1994.1307 (1994).
Goldstein, A.N. Echer, C.M. & Alivisatos, A.P. Melting in semiconductor nanocrystals. Science 256(5062), 1425-1427; https://doi.org/10.1126/science.256.5062.1425 (1992).
Jackson, C.L. & McKenna, G.B. Vitrification and crystallization of organic liquids confined to nanoscale pores. Chemistry of Materials 8(8), 2128-2137; https://doi.org/10.1021/cm9601188 (1996).
Lai, S.L. Guo, J.Y. Petrova, V. Ramanath, G. & Allen, L.H. Size-dependent melting properties of small tin particles: nanocalorimetric measurements. Physical review letters 77(1), 99; https://doi.org/10.1103/PhysRevLett.77.99 (1996).
Chen, B. Penwell, D. Kruger, M.B. Yue, A.F. & Fultz, B. Nanocrystalline iron at high pressure. Journal of Applied Physics 89(9), 4794-4796; https://doi.org/10.1063/1.1357780 (2001).
Tolbert, S.H. & Alivisatos, A.P. High-pressure structural transformations in semiconductor nanocrystals. Annual Review of Physical Chemistry 46(1), 595-626; https://doi.org/10.1146/annurev.pc.46.100195.003115 (1995).
Abril, R.J. Eloirdi, R. Bouëxière, D. Malmbeck, R. & Spino, J. In situ high temperature X-ray diffraction study of UO2 nanoparticles. Journal of Materials Science 46, 7247–7252; https://doi.org/10.1007/s10853-011-5684-4 (2011).
Diederichs, J. Schilling, J.S. Herwig, K.W. Yelon, W.B. Dependence of the superconducting transition temperature and lattice parameter on hydrostatic pressure for Rb3C60. Journal of Physics and Chemistry of Solids 58(1), 123-132; https://doi.org/10.1016/S0022-3697(96)00087-X (2000).
Chen, B. Penwell, D. & Kruger, M.B. The compressibility of nanocrystalline nickel. Solid state communications 115(4), 191-194; https://doi.org/10.1016/S0038-1098(00)00160-5 (2000).
Tang, J. Qin, L.C. Sasaki, T. Yudasaka, M. Matsushita, A. & Iijima, S. Compressibility and polygonization of single-walled carbon nanotubes under hydrostatic pressure. Physical Review Letters 85(9), 1887; https://doi.org/10.1103/PhysRevLett.85.1887 (2000).
Piermarini, G.J. Block, S. & Barnett, J.D. Hydrostatic limits in liquids and solids to 100 kbar. Journal of Applied Physics 44(12), 5377-5382; https://doi.org/10.1063/1.1662159 (1973).
Jing, Z. Lin, G. Jing, L. Yang, Y. Rong-Zheng, C. & Lei, Z. High Bulk Modulus of Nanocrystal γ-Fe2O3 with Chemical Dodecyl Benzene Sulfonic Decoration Under High Pressure Chinese Physics Letters 17(2), 126-128; https://cpl.iphy.ac.cn/Y2000/V17/I2/0126 (2000).
Chen, B. Penwell, D. Kruger, M.B. Yue, A.F. & Fultz, B. Nanocrystalline iron at high pressure. Journal of Applied Physics 89(9), 4794-4796; https://doi.org/10.1063/1.1357780 (2001).
Rekhia, S. Saxenaa, S.K. Atlasa, Z.D. & Hub, J. Effect of particle size on the compressibility of MgO. Solid State Communications 117(1), 33-36; https://doi.org/10.1016/S0038-1098(00)00412-9 (2001).
Wang, Z. Pischedda, V. Saxena, S.K. & Lazor, P. X-ray diffraction and Raman spectroscopic study of nanocrystalline CuO under pressures. Solid state communications 121(5), 275-279; https://doi.org/10.1016/S0038-1098(01)00509-9 (2002).
Mao, H.K. Bell, P.M. Dunn, K.J. Chrenko, R.M. & DeVries, R.C. Absolute pressure measurements and analysis of diamonds subjected to maximum static pressures of 1.3–1.7 Mbar. Review of Scientific Instruments 50(8), 1002-1009; https://doi.org/10.1063/1.1135966 (1979).
Chen, B. Penwell, D. Benedetti, L.R. Jeanloz, R. & Kruger, M.B. Particle-size effect on the compressibility of nanocrystalline alumina. Physical Review B 66(14), 144101; https://doi.org/10.1103/PhysRevB.66.144101 (2002).
Gupta, R. & Gupta, M. Bulk modulus of second-order pressure derivative for nanomaterials. Bulletin of Materials Science 44(3), 218; https://doi.org/10.1007/s12034-021-02503-5 (2021).
Wang, Z. Tait, K. Zhao, Y. Schiferl, D.Zha, C. Uchida, H. & Downs, R.T. Size-induced reduction of transition pressure and enhancement of bulk modulus of AlN nanocrystals. The Journal of Physical Chemistry B 108(31), 11506-11508; https://doi.org/10.1021/jp048396e (2004).
Born, M. & Huang, K. In Dynamical Theory of Crystals Lattice. Oxford University Press, Oxford, (1995).
Vinet, P.J.J.R. Ferrante, J. Smith, J.R. & Rose, J.H. A universal equation of state for solids. Journal of Physics C: Solid State Physics 19(20), L467; https://doi.org/10.1088/0022-3719/19/20/001 (1986).
Sharma, U.D. & Kumar, M. Effect of pressure on nanomaterials. Physica B: Condensed Matter 405(13), 2820-2826; https://doi.org/10.1016/j.physb.2010.04.005 (2010).
Swamy, V. Dubrovinsky, L.S. Dubrovinskaia, N.A. Simionovici, A.S. Drakopoulos, M. Dmitriev, V. & Weber, H.P. Compression behavior of nanocrystallineanatase TiO2. Solid state communications 125(2), 111-115; https://doi.org/10.1016/S0038-1098(02)00601-4 (2003).
Clark, S.M. Prilliman, S.G. Erdonmez, C.K. & Alivisatos, A.P. Size dependence of the pressure-induced γ to α structural phase transition in iron oxide nanocrystals. Nanotechnology 16(12), 2813; https://doi.org/10.1088/0957-4484/16/12/013 (2005).
Tolbert, S.H. & Alivisatos, A.P. The wurtzite to rock salt structural transformation in CdSe nanocrystals under high pressur. Journal of Chemical Physics 102, 4642–4656; https://doi.org/10.1063/1.469512 (1995).
Lau Kia Kian, Mohammad Jawaid, Thermal Properties of Nanocrystalline Cellulose and Cellulose Nanowhisker. (2019). In International Journal of Innovative Technology and Exploring Engineering (Vol. 9, Issue 1, pp. 5430–5434). https://doi.org/10.35940/ijitee.a8103.119119
Sulaiman, S., Hassan, A., Abu Bakar, M. H., & Mohamed Noor, A. Z. (2019). Scalable Synthesis of Aluminium Oxide Nanoparticle for Cost Minimization in Battery Electrode. In International Journal of Recent Technology and Engineering (IJRTE) (Vol. 8, Issue 2, pp. 3418–3422). https://doi.org/10.35940/ijrte.b2366.078219
Sobana, S., Alagumanian, S., Kumar, R. D., Sakthivel, P., & Sivakumar, P. (2020). Effect Of Al3 Inclusion on Characterization Exploration, Magnetic and Anti Cancer Properties of Cobalt Ferrite Nanoparticles Synthesised by Co Precipitation Process. In International Journal of Engineering and Advanced Technology (Vol. 9, Issue 3, pp. 4191–4198). https://doi.org/10.35940/ijeat.c5730.029320