Therapeutic Nanoparticles: Advantages and Toxicity
Main Article Content
Abstract
The present review focused on various advantages and hazardous aspects of therapeutically used nanoparticles. Therapeutic applications of nanoparticles have been covered in cancer diagnosing and therapy, surgery, bio-detection of disease markers, molecular imaging, implant application, tissue engineering, and devices for gene, drug, radionuclide, and protein delivery. Many therapeutic nanotechnology applications are still in their beginning stages. However, promising applications are being developed especially in the field of cancer therapy. Nanoparticles are proficient as carriers for chemo-therapeutic drugs and enhance their therapeutic index. These NPs act as therapeutic agents in gene and photothermal therapy. Furthermore, they function as molecular imaging agents to distinguish target cells and monitor cancer progression. Finally, the generations of toxic biological responses of these nanoparticles are mentioned based on detailed explanations of NPs toxicity assessment. Evaluation of potential toxicity of NPs are mainly comprises of its physicochemical properties, inclusive particle characterization (such as size, shape, specific surface area, agglomeration, solubility, element impurity etc.), function of cellular and non-cellular in vitro toxicity assessment and animal supported toxicological measures.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
A.Z. Wang, R. Langer, O.C.Farokhzad, Nanoparticle delivery of cancer drugs. Ann. Rev. Med. 63, 185-198 (2012) [CrossRef] 2. R.A. Petros, J.M. DeSimone, Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov. 9, 615-627(2010) [CrossRef]
L. Zhang et al., Nanoparticles in medicine: Therapeutic applications and developments. Clin. Pharmacol. Ther. 83(5), 761-769 (2008) [CrossRef]
K. Cho et al., Therapeutic Nanoparticles for Drug Delivery in Cancer. Clin. Cancer Res. 14, 1310-1316 (2008) [CrossRef]
T.A.P.F. Doll, et al., Nanoscale assemblies and their biomedical applications. J. Royal Soc. Interf. 10-20120740, 1-14 (2013) [CrossRef]
D.W. Kuykendall, S.C. Zimmerman, Nanoparticles: a very versatile nanocapsule. Nat. Nanotechnol. 2, 201-202 (2007) [CrossRef]
K.Y. Win, S.S. Feng, In vitro and in vivo studies on vitamin E TPGS-emulsified poly( D,L-lactic-co-glycolic acid) nanoparticles for paclitaxel formulation. Biomater. 27, 2285-2291 (2006) [CrossRef]
S. Lee, et al., Hyperbranched double hydrophilic block copolymer micelles of poly(ethylene oxide) and polyglycerol for pH-responsive drug delivery. Biomacromol. 13, 1190-1196 (2012) [CrossRef] 9. N. Song, et al., Preparation and in vitro properties of redox responsive polymeric nanoparticles for paclitaxel delivery. Colloid. Surf. B – Biointerf. 87, 454–463 (2011) [CrossRef] 10. C. Wong, et al., Multistage nanoparticle delivery system for deep penetration into tumor tissue. Proc. Natl. Acad. Sci. U. S. A.108, 2426-2431 (2011) [CrossRef] 11. R. Tong, et al., Photoswitchable nanoparticles for triggered tissue penetration and drug delivery. J. Am. Chem. Soc. 134, 8848–8855 (2012) [CrossRef] 12. C.E. Ashley et al., Cell-specific delivery of diverse cargos by bacteriophage MS2 virus-like particles. ACS Nano 5, 5729-5745 (2011) [CrossRef] 13. Y. Kitai, et al., Y Cell selective targeting of a simian virus-40 virus-like particle conjugated to epidermal growth factor. J. Biotechnol. 155, 251-256 (2011) [CrossRef] 14. Z. Xiao et al., Engineering of targeted nanoparticles for cancer therapy using internalizing aptamers isolated by cell-uptake selection. ACS Nano 6, 696-704 (2012) [CrossRef]
B.M. Dale et al., Tracking and quantitation of fluorescent HIV during cell-to-cell transmission. Methods 53, 20–26 (2011) [CrossRef] 16. J.D. Lewis et al., Viral nanoparticles as tools for intravital vascular imaging. Nat. Med. 12, 354-360 (2006) [CrossRef] 17. K. Li, et al., Chemical modification of M13-bacteriophage and its application in cancer cell imaging. Bioconjugate Chem. 21, 1369-1377 (2010) [CrossRef] 18. X. Michalet et al., Quantum dots for live cells, in vivo imaging, and diagnostics. Sci. 307, 538–544(2005) [CrossRef] 19. J. Rieger et al., Polyester nanoparticles presenting mannose residues: toward the development of new vaccine delivery systems combining biodegradability and targeting properties. Biomacromol. 10, 651-657 (2009) [CrossRef] 20. D.S. Watson, A.N. Endsley, L. Huang, Design considerations for liposomal vaccines: influence of formulation parameters on antibody and cell mediated immune responses to liposome associated antigens. Vaccine 30, 2256-2272 (2012) [CrossRef] 21. D.J. Laddy, D.B. Weiner, From plasmids to protection: a review of DNA vaccines against infectious diseases. Internat. Rev. Immunol. 25, 99-123 (2006) [CrossRef] 22. U.K. Kar et al., Vault nanocapsules as adjuvants favor cell-mediated over antibody-mediated immune responses following immunization of mice. PLoS ONE 7, e38553 (2012) [CrossRef] 23. G.T. Jennings, M.F. Bachmann, Immunodrugs: therapeutic VLP-based vaccines for chronic diseases. Ann. Rev. Pharmacol. Toxicol. 49, 303-326 (2009) [CrossRef] 24. P.M. Ambuhl et al., A vaccine for hypertension based on virus-like particles: preclinical efficacy and phase-I safety and immunogenicity. J. Hyperten. 25, 63-72 (2007) [CrossRef] 25. P. Burkhard, J. Stetefeld, S. Strelkov, Coiled coils: a highly versatile protein folding motif. Trend Cell Biol. 11, 82-88 (2001) [CrossRef] 26. S. Raman et al., Structure-based design of peptides that self-assemble into regular polyhedral nanoparticles. Nanomed. 2, 95-102 (2006) [CrossRef] 27. S. Raman et al., Design of Peptide Nanoparticles Using Simple Protein Oligomerization Domains. Open Nanomed. J. 2, 15-26 (2009) [CrossRef] 28. Y. Yang et al., The biodistribution of self-assembling protein nanoparticles shows they are promising vaccine platforms. J. Nanobiotechnol. 11, 36-46 (2013) [CrossRef] 29. Y. Yang et al., Optimizing the refolding conditions of self assembling polypeptide nanoparticles that serve as repetitive antigen display systems. J. Str. Biol. 177, 168-176 (2012) [CrossRef]
A.S. Thakor, S.S. Gambhir, Nanooncology: The future of cancer diagnosis and therapy. CA: A Cancer J. Clin. 63, 395-418 (2013) [CrossRef]
J.H. Ryu et al., Tumor-targeting multi-functional nanoparticles for theragnosis: new paradigm for cancer therapy. Adv. Drug Deliv. Rev. 64, 1447-1458 (2012) [CrossRef]
N. Ahmed, H. Fessi, A. Elaissari, Theranostic applications of nanoparticles in cancer. Drug Discov. Today 17, 928-934 (2012) [CrossRef]
S.P. Egusquiaguirre, Nanoparticle delivery systems for cancer therapy: advances in clinical and preclinical research. Clin. Translat. Oncol. 14, 83-93 (2012) [CrossRef]
X. Wang et al., Advances of Cancer Therapy by Nanotechnology. Cancer Res. Treat. 41(1), 1-11 (2009) [CrossRef]
D.E Owens 3rd, N.A. Peppas, Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Intern. J. Pharm. 307, 93-102 (2006) [CrossRef]
M. Kazuo, Intracellular targeting delivery of liposomal drugs to solid tumors based on EPR effects. Adv. Drug Deliv. Rev. 63, 161-169 (2011) [CrossRef]
S.E. Gratton et al., The effect of particle design on cellular internalization pathways. Proc. Nat. Acad Sci. U.S.A. 105, 11613–11618 (2008) [CrossRef]
T. Matsuzaki et al., Antitumor activity of IHL-305, a novel pegylated liposome containing irinotecan, in human xenograft models. Oncol. Rep. 27, 189-197 (2012)
M. Markman, Pegylated liposomal doxorubicin in the treatment of cancers of the breast and ovary. Expert Opin. Pharmacother 7, 1469-1474(2006) [CrossRef]
V.P. Torchilin, Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov.4, 145-160 (2005) [CrossRef]
E. Miele et al., Albumin-bound formulation of paclitaxel(Abraxane ABI-007) in the treatment of breast cancer. Intern J. Nanomed. 4, 99-105 (2009) [CrossRef]
S. Svenson et al., Preclinical to clinical development of the novel camptothecin nanopharmaceutical CRLX101. J. Control. Release 153, 49-55 (2011) [CrossRef]
M.E. Davis, The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: from concept to clinical. Mol. Pharm. 6, 659-668 (2009) [CrossRef]
B. Semete et al., In vivo evaluation of the biodistribution and safety of PLGA nanoparticles as drug delivery systems. Nanomed. 6, 662-671 (2010) [CrossRef] 45. S. Movassaghian, O.M. Merkel, V.P. Torchilin, Applications of polymer micelles for imaging and drug delivery. WIREs Nanomed. Nanobiotechnol. 1-18 (2015) [CrossRef]
N. Nsongkla, Multifunctional polymeric micelles as cancer- targeted, MRI-ultrasensitive drug delivery systems. Nano Lett. 6, 2427-2430 (2006) [CrossRef] 47. H.J. Kim et al., Phase-II clinical trial of Genexol(R) (paclitaxel) and carboplatin for patients with advanced non-small cell lung cancer. Cancer Res. Treat. 43, 19-23 (2011) [CrossRef] 48. T.Y. Kim et al., Phase-I and pharmacokinetic study of Genexol-PM, a cremophor-free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies. Clin. Cancer Res. 10, 3708-3716 (2004) [CrossRef]
H.J. Lee et al., MR traceable delivery of p53 tumor suppressor gene by PEI-functionalized superparamagnetic iron oxide nanoparticles. Journal of Biomedical Nanotechnology 8, 361-371 (2012) [CrossRef] 50. K.S. Lee et al., Multicenter phase-II trial of Genexol-PM, a Cremophor free, polymeric micelle formulation of paclitaxel, in patients with metastatic breast cancer. Breast Cancer Research and Treatment 108, 241-250 (2008) [CrossRef] 51. M. Aleku et al., Atu027, a liposomal small interfering RNA formulation targeting protein kinase N3, inhibits cancer progression. Cancer Res. 68, 9788–9798 (2008) [CrossRef] 52. M.E. Ruiz, M.E., Gantner, A. Talevi, Applications of Nanosystems to Anticancer Drug Therapy (Part-II. Dendrimers, Micelles, Lipid-based Nanosystems). Recent Patent Anti-cancer Drug Discov. 9, 1-30 (2013) [CrossRef]
T. Choi et al., Synthesis and functional evaluation of DNA assembled polyamidoamine dendrimer clusters for cancer cell-specific targeting. Chem. Biol. 12, 35-43 (2005) [CrossRef]
S. Svenson, Dendrimers as versatile platform in drug delivery applications. Euro. J. Pharm. Biopharm. 71, 445-462 (2009) [CrossRef]
S.H. Hu, Core-shell nanocapsules stabilized by single-component polymer and nanoparticles for magneto-chemotherapy/ hyperthermia with multiple drugs. Adv. Mater. 24, 3627-3632 (2012) [CrossRef]
K. Cheng, Porous hollow Fe(3)O(4) nanoparticles for targeted delivery and controlled release of cisplatin. J. Am. Chem. Soc. 131, 10637-10644 (2009) [CrossRef]
T. Niidome et al., PEG-modified gold nanorods with a stealth character for in vivo applications. J. Control. Release 114, 343-347 (2006) [CrossRef]
N. Huang et al., Single-wall carbon nanotubes assisted photothermal cancer therapy: animal study with a murine model of squamous cell carcinoma. Laser. Surg. Med. 42, 638-648 (2010) [CrossRef]
V.S. Thakare et al., Carbon nanotubes in cancer theragnosis. Nanomed. (London, England) 5, 1277-1301 (2010) [CrossRef]
G. Pastorin et al., Double functionalisation of carbon nanotubes for multimodal drug delivery. Chem. Commun. 11, 1182-1184 (2006) [CrossRef]
P. Singh et al., Canine parvovirus-like particles, a novel nanomaterial for tumor targeting. J. Nanobiotechnol. 4(2), 1-11 (2006) [CrossRef]
M.L. Flenniken et al., Melanoma and lymphocyte cell-specific targeting incorporated into a heat shock protein cage architecture. Chem. Biol. 13,161-170 (2006) [CrossRef]
S.P. Chawla et al., Advanced phase I/II studies of targeted gene delivery in vivo: intravenous Rexin-G for gemcitabine-resistant metastatic pancreatic cancer. Mol. Ther. 18, 435-441 (2010) [CrossRef]
A.D. Bangham, M.M. Standish, J.C. Watkins Diffusion of univalent ions across the lamellae of swollen phospholipids. J. Mol. Biol.13, 238-252 (1965) [CrossRef]
R.D. Hofheinz et al., Liposomal encapsulated anti-cancer drugs. Anticancer Drugs 16, 691-707 (2005) [CrossRef]
A.S. Abreu et al., Nanoliposomes for encapsulation and delivery of the potential antitumoral methyl 6-methoxy-3(4-methoxyphenyl)-1H-indole-2-carboxylate. Nanoscale Res. Lett.6, 482-487 (2011) [CrossRef]
M.R. Díaz, P.V. Vivas-Mejia Nanoparticles as Drug Delivery Systems in Cancer Medicine: Emphasis on RNAi-Containing Nanoliposomes. Pharm. 6, 1361-1380 (2013) [CrossRef]
A.Sharma, S.V. Madhunapantula, G.P. Robertson, Toxicological considerations when creating nanoparticle based drugs and drug delivery systems? Expert Opin. Drug Metabol. Toxicol. 8(1), 47-69 (2012) [CrossRef]
A. Puri et al., Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic. Crit. Rev. Ther. Drug Carrier Sys. 26, 523–580 (2009) [CrossRef] 70. D.A. Balazs, W. Godbey, Liposomes for use in gene delivery. J. Drug Deliv. 326497, 1-12 (2011) [CrossRef] 71. J.E. Podesta, K. Kostarelos, Chapter 17-Engineering cationic liposome siRNA complexes for in vitro and in vivo delivery. Method Enzymol. 464, 343-354 (2009) [CrossRef]
B. Ozpolat, A.K. Sood, G. Lopez-Berestein, Nanomedicine based approaches for the delivery of siRNA in cancer. J. Inter. Med. 267, 44-53 (2010) [CrossRef] 73. A.M. Gewirtz, RNA targeted therapeutics for hematologic malignancies. Blood Cell. Mol. Dis. 38, 117-119 (2007) [CrossRef] 74. C.N. Landen, Jr. et al., Therapeutic EphA2 gene targeting in vivo using neutral liposomal small interfering RNA delivery. Cancer Res. 65, 6910-6918 (2005) [CrossRef] 75. U. Akar et al., Silencing of Bcl-2 expression by small interfering RNA induces autophagic cell death in MCF-7 breast cancer cells. Autophagy 4, 669-679 (2008) [CrossRef]
F. Alexis et al., Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol. Pharm. 5, 505-515 (2008) [CrossRef]
G.Z. Zhang et al., Formation of novel polymeric nanoparticles. Acc. Chem. Res. 34, 249-256 (2001) [CrossRef]
M.L. Adams, A. Lavasanifar, G.S. Kwon, Amphiphilic block copolymers for drug delivery. J. Pharm. Sci. 92, 1343-1355 (2003) [CrossRef] 79. N.A. Ochekpe, P.O. Olorunfemi, N. Ngwuluka, Nanotechnology and Drug Delivery Part-2: Nanostructures for Drug Delivery. Tropical J. Pharm. Res. 8, 275-287 (2009) [CrossRef] 80. W. Qiao et al., Cancer Therapy Based on Nanomaterials and Nanocarrier Systems. J. Nanomater. 2010, 1-9 (2010) [CrossRef]
O.L. Padilla De-Jesus et al., Polyester dendritic systems for drug delivery applications: in vitro and in vivo evaluation. Bioconjug. Chem. 13, 453-461 (2002) [CrossRef]
D. Bhadra et al., A PEGylated dendritic nanoparticulate carrier of fluorouracil. Inter. J. Pharm. 257, 111-124 (2003) [CrossRef]
S. Sonke, D.A. Tomalia, Dendrimers in biomedical applications reflections on the Field. Adv. Drug Deliv. Rev. 57, 2106-2129 (2005) [CrossRef]
S.H. Medina, M.E. El-Sayed, Dendrimers as carriers for delivery of chemo-therapeutic agents. Chem. Rev. 109, 3141-3157 (2009) [CrossRef]
S. Langereis et al., Evaluation of Gd(III)DTPA-terminated poly(propylene imine) dendrimers as contrast agents for MR imaging. NMR Biomed. 19, 133-141 (2006) [CrossRef]
H. Wang et al., Folate-targeting magnetic core-shell nanocarriers for selective drug release and imaging. Inter. J. Pharm. 430, 342-349 (2012) [CrossRef]
G. Doria et al., Noble metal nanoparticles for biosensing applications. Sensors 12, 1657-1687 (2012) [CrossRef]
S. Bhattacharyya et al., Inorganic nanoparticles in cancer therapy. Pharm. Res.28(2), 237-259 (2011) [CrossRef]
R.A. Sperling, W.J. Parak, Surface modification, functionalization and bioconjugation of colloidal Inorganic nanoparticles. Philos. Tran. Royal Soc. A.368 (1915), 1333-1383 (2010) [CrossRef]
P. Ghosh et al., Gold nanoparticles in delivery applications. Adv. Drug Deliv. Rev.60(11), 1307-1315 (2008) [CrossRef]
H. Chen et al., Synthesis of palladium nanoparticles and their applications for surface enhanced raman scattering and electrocatalysis. J. Phy. Chem. C 114(50), 21976−21981 (2010) [CrossRef]
V.J. Day, G. Morton, J.L. West, Nanoparticles for thermal cancer therapy. J. Biomech. Eng.131(7), Article ID 740011, 1-12 (2009) [CrossRef]
P.K. Jain et al., Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc. Chem. Res.41(12), 1578-1586 (2008) [CrossRef]
X. Qian et al., In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat. Biotechnol. 26, 83-90 (2008) [CrossRef]
T. Neuberger et al., Superparamagnetic nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system. J. Magn Magn Mater. 293, 483-496 (2005) [CrossRef] 96. M.R. Saboktakin, A., Maharramov. M.A. Ramazanov, Synthesis and characterization of superparamagnetic nanoparticles coated with carboxymethyl starch (CMS) for magnetic resonance imaging technique. Carb. Poly. J. 78(2), 292-295 (2009) [CrossRef]
J. Meng et al., LHRH-Functionalized superparamagnetic iron oxide nanoparticles for breast cancer targeting and contrast enhancement in MRI. Mater. Sci. Eng.C. 29, 1467-1479 (2009) [CrossRef]
A. Jordan et al., The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma. J. Neuro-Oncol. 78, 7-14 (2006) [CrossRef]
A. Jordan, Inductive heating of ferromagnetic particles and magnetic fluids: physical evaluation of their potential for hyperthermia. 1993. Intern. J. Hyperth. 25, 499-511 (2009) [CrossRef]
M. Johannsen et al., Magnetic nanoparticle hyperthermia for prostate cancer. International J. Hyperth 26(8), 790-795 (2010) [CrossRef]
F. Alexis et al., Nanoparticle Technologies for Cancer Therapy, in Drug Delivery, Handbook of Experimental Pharmacology, Schäfer-Korting M. Eds., (Springer-Verlag Berlin Heidelberg Publishing), 55-86 (2010) [CrossRef]
M. Johannsen et al., Thermotherapy of prostate cancer using magnetic nanoparticles: feasibility, imaging, and three-dimensional temperature distribution. Eur. Urol 52, 1653-1661 (2007) [CrossRef]
Y. Ling et al., Temozolomide loaded PLGA-based superparamagnetic nanoparticles for magnetic resonance imaging and treatment of malignant glioma. Inter. J. Pharm. 430, 266-275 (2012) [CrossRef]
X. Yang et al., cRGD functionalized DOX-conjugated, and 64Cu-labeled superparamagnetic iron oxide nanoparticles for targeted anticancer drug delivery and PET/MR imaging. Biomater. 32, 4151-4160 (2011) [CrossRef]
W.H. De-Jong, P.J. Borm, Drug delivery and nanoparticles: applications and hazards. Intern. J. Nanomed. 3, 133-149 (2008) [CrossRef]
S.J. Soenena et al., Cellular toxicity of inorganic nanoparticles: Common aspects and guidelines for improved nanotoxicity evaluation. Nano Today 6, 446-465 (2011) [CrossRef]
R. Hardman, A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ. Health Persp. 114, 165-172 (2006) [CrossRef]
A.M. Smith et al., Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv. Drug Deliv. Rev. 60, 1226-1240 (2008) [CrossRef] 109. M.A. Walling, J.A. Novak, J.R.E. Shepard, Quantum dots for live celland in vivo imaging. Intern. J. Mol. Sci. 10, 441-491 (2009) [CrossRef] 110. A. May et al., Whole-body, real-time preclinical imaging of quantum dot fluorescence with time-gated detection. J. Biomed. Optics 14(6), 0605041-3 (2009) [CrossRef] 111. H.M. Colton et al., Visualization and quantitation of peroxisomes using fluorescent nanocrystals: treatment of rats and monkeys with fibrates and detection in the liver. Toxicol. Sci. 80, 183-192 (2004) [CrossRef] 112. P. Juzenas et al., Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer. Adv.Drug Deliv. Rev. 60, 1600-1614 (2008) [CrossRef]
A.M. Smith et al., Multicolor quantum dots for molecular diagnostics of cancer. Expert Rev. Mol. Diag. 6, 231-244 (2006) [CrossRef]
X.Y. Wu et al., Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat. Biotechnol. 21,41-46 (2003) [CrossRef]
T.J. Fountaine et al., Multispectral imaging of clinically relevant cellular targets in tonsil and lymphoid tissue using semiconductor quantum dots. Mod Pathol 19, 1181-1191 (2006) [CrossRef]
D.S. Lidke et al., Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction. Nat. Biotechnol. 22,198-203 (2004) [CrossRef]
M.N. Rhyner et al., Quantum dots and multifunctional nanoparticles: new contrast agents for tumor imaging. Nanomed. 1, 209-217 (2006) [CrossRef] 118. A. El-Ansary, S. Al-Daihan, On the Toxicity of Therapeutically Used Nanoparticles: An Overview. J. Toxicol Article ID 754810, 1-9 (2009) [CrossRef] 119. Y.J. Gu et al., Nuclear penetration of surface functionalized gold nanoparticles. Toxicol. Appl. Pharmacol. 237(2), 196-204 (2009) [CrossRef] 120. M. Chu et al., Transfer of quantum dots from pregnant mice to pups across the placental barrier. Small 6, 670–678(2010) [CrossRef] 121. H.K. Lindberg et al., Genotoxicity of nanomaterials: DNA damage and micronuclei induced by carbon nanotubes and graphite nanofibres in human bronchial epithelial cells in vitro. Toxicol. Lett. 186, 166-173(2009) [CrossRef] 122. N. Singh et al., Nano-Genotoxicology: The DNA damaging potential of engineered nanomaterials. Biomater. 30, 3891-3914 (2009) [CrossRef] 123. V. Sharma et al., Zinc oxide nanoparticle induced genotoxicity in primary human epidermal keratinocytes. J. Nanosci. Nanotechnol. 11, 3782-3788 (2011) [CrossRef]
Y. Li, Y. Zhang, B. Yan, Nanotoxicity Overview: Nano-Threat to Susceptible Populations. Intern. J. Mol. Sci. 15, 3671-3697 (2014) [CrossRef] 125. S. Hussain, J.A.J. Vanoirbeek, P.H.M. Hoet, Interactions of nanomaterials with the immune system. Wiley Interdisciplinary Reviews: Nanomed. Nanobiotechnol. 4, 169-183 (2012) [CrossRef] 126. L. Truong et al., Surface functionalities of gold nanoparticles impact embryonic gene expression responses. Nanotoxicol.7, 192-201(2013) [CrossRef] 127. A.V. Tkach et al., Direct effects of carbon nanotubes on dendritic cells induce immune suppression upon pulmonary exposure. ACS Nano 5, 5755-5762 (2011) [CrossRef]
T.R. PisanicII et al., Nanotoxicity of iron oxide nanoparticle internalization in growing neurons. Biomater28(16), 2572-2581 (2007) [CrossRef]
S.M. Mirsattari et al., Myoclonic status epilepticus following repeated oral ingestion of colloidal silver. Neurol.62(8), 1408-1410 (2004) [CrossRef]
S.M. Hussain et al., The interaction of manganese nanoparticles with PC-12 cells induces dopamine depletion. Toxicol. Sci.92(2), 456-463 (2006) [CrossRef] 131. H.W. Chen et al., Titanium dioxide nanoparticles induce emphysema-like lung injury in mice. The FASEB J.20(13), 2393–2395 (2006) [CrossRef]
S. Takenaka et al., Pulmonary and systemic distribution of inhaled ultrafine silver particles in rats. Environmental Health Perspectives109(4), 547-551(2001) [CrossRef]
L.K. Limbach et al., Exposure of engineered nanoparticles to human lung epithelial cells: influence of chemical composition and catalytic activity on oxidative stress. Environ. Sci. Technol. 41, 4158-4163 (2007) [CrossRef]
V. Wiwanitkit, A. Sereemaspun, R. Rojanathanes, Effect of gold nanoparticles on spermatozoa: the first world report. Fertil. Steril. 91, 7-8 (2009) [CrossRef]
Z.O. Kyjovska et al., Daily sperm production: Application in studies of prenatal exposure to nanoparticles in mice. Reprod. Toxicol.36, 88-97 (2013) [CrossRef]
J.B. Wright et al., Early healing events in a porcine model of contaminated wounds: effects of nanocrystalline silver on matrix metalloproteinases, cell apoptosis, and healing. Wound Repair Regen10(3), 141-151 (2002) [CrossRef]
J. E. Paddle-Ledinek, Z. Nasa, H. J. Cleland, Effect of different wound dressings on cell viability and proliferation. Plastic and Reconstructive Surgery117(7), 110S-118S (2006). [CrossRef]
A.P. Supp et al., Evaluation of cytotoxicity and antimicrobial activity of Acticoat burn dressing for management of microbial contamination in cultured skin substitutes grafted to athymic mice. J. Burn Care Rehab. 26(3), 238-246 (2005)
L. Braydich-Stolle et al., In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol. Sci.88(2), 412-419 (2005)
[CrossRef]
J. Huwyler, J. Drewe, S. Krahenbuhl, Tumor targeting using liposomal antineoplastic drugs. Intern. J. Nanomed. 3, 21-29 (2008) [CrossRef]
D.S. Alberts et al., Randomized trial of pegylated liposomal doxorubicin (PLD) plus carboplatin versus carboplatin in platinum-sensitive (PS) patients with recurrent epithelial ovarian or peritoneal carcinoma after failure of initial platinum-based chemotherapy (Southwest Oncology Group Protocol S0200). Gynecol. Oncol. 108, 90-94 (2008) [CrossRef]
Y. Barenholz, Liposome application: problems and prospects. Curr. Opin. Colloid Interf. Sci. 6, 66–77 (2001) [CrossRef]
S. Spagnou, A.D. Miller, M. Keller, Lipidic carriers of siRNA: differences in the formulation, cellular uptake, and delivery with plasmid DNA. Biochem. J. 43,13348-13356 (2004) [CrossRef]
H. Lv et al., Toxicity of cationic lipids and cationic polymers in gene delivery. J. Control. Release 114, 100-109 (2006) [CrossRef]
S.T.D. Dokka et al., Oxygen radical-mediated pulmonary toxicity induced by some cationic liposomes. Pharm. Res. May, 521-525 (2000)
S. Akhtar, I. Benter, Toxicogenomics of non-viral drug delivery systems for RNAi: potential impact on siRNA-mediated gene silencing activity and specificity. Adv. Drug Deliv. Rev. 59, 164-182 (2007) [CrossRef]
S. Bisht, A. Maitra, Dextran-doxorubicin/chitosan nanoparticles for solid tumor therapy. Wiley Interdisciplinary Reviews: Nanomed. Nanobiotechnol. 1, 415-425 (2009) [CrossRef]
S. Dhaneshwar et al., Dextran: A promising macromolecular drug carrier. Ind. J. Pharm. Sci. 68,705-714 (2006) [CrossRef]
K. Ichinose et al., Antitumor activity of dextran derivatives immobilizing platinum complex (II). Anticancer Drug 11, 33-38 (2000) [CrossRef]
S.K. Shrivastava, D.K. Jain, P. Trivedi, Dextrans-potential polymeric drug carriers for suprofen. Die Pharmazie 58,804-806 (2003) [CrossRef]
B. Darrell et al., Dextran-Induced Acute Renal Failure after Microvascular Muscle Transplantation. Plast. Reconstr. Surg. 108, 2057-2060 (2001) [CrossRef]
T. Musumeci et al., PLA/PLGA nanoparticles for sustained release of docetaxel. International Journal of Pharmaceutics 325,172-179 (2006)(a) [CrossRef] 153. T. Musumeci et al., Lyoprotected nanosphere formulations for paclitaxel controlled delivery. Journal of Nanoscience and Nanotechnology 6, 3118-3125 (2006)(b) [CrossRef]
R.A. Jain, The manufacturing techniques of various drug loaded biodegradable poly(lactide-coglycolide) (PLGA) devices. Biomater. 21, 2475-2490 (2000) [CrossRef]
H.J., Lim et al., A novel technique for loading of paclitaxel-PLGA nanoparticles onto ePTFE vascular grafts. Biotechnol. Prog. 23,693-697 (2007) [CrossRef]
B.K. Nanjwade et al., Dendrimers: emerging polymers for drug-delivery systems. Eur. J. Pharm. Sci. 38,185-196 (2009) [CrossRef]
D.J. Bharali et al., Nanoparticles and cancer therapy: a concise review with emphasis on dendrimers. Intern. J. Nanomed. 4, 1-7 (2009) [CrossRef]
M.A. Mintzer, M.W. Grinstaff, Biomedical applications of dendrimers: a tutorial. Chem. Soc. Rev. 40, 173-190 (2011) [CrossRef]
M. El-Sayed, Transepithelial transport of poly(amidoamine) dendrimers across Caco-2 cell monolayers. J. Control.Release 81,355-365 (2002) [CrossRef]
D. Fischer, In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomater. 24, 1121-1131 (2003) [CrossRef]
C. Shen, A.H. Brozena, Y. Wang, Double-walled carbon nanotubes: Challenges and opportunities. Nanoscale. 3(2), 503-518 (2011) [CrossRef]
A.A. Shvedova et al., Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells. J. Toxicol. Environ.l Health: Part A 66, 1909-1926 (2003) [CrossRef] 163. D.B. Warheit et al., Comparative pulmonary toxicity assessment of single wall carbon nanotubes in rats. Toxicol. Sci. 77,117-125 (2004) [CrossRef] 164. P. Ravichandran et al., Induction of apoptosis in rat lung epithelial cells by multiwalled carbon nanotubes. J. Biochem. Mol. Toxicol. 23, 333-344 (2009) [CrossRef]
J. Muller et al., Respiratory toxicity of multi-wall carbon nanotubes. Toxicol. Appl. Pharmacol. 207,221-231 (2005) [CrossRef]
K.E. Moore, D.D. Tune, B.S. Flavel, Double-Walled Carbon Nanotube Processing. Adv. Mater. 27, 3105-3137 (2015) [CrossRef]
T.S. Hauck, W.C. Chan, Gold nanoshells in cancer imaging and therapy: towards clinical application. Nanomed. (London, England) 2,735-738 (2007) [CrossRef]
X. Ji et al., Bifunctional Gold Nanoshells with a Superparamagnetic Iron Oxide-Silica Core Suitable for Both MR Imaging and Photothermal Therapy. J. Phy. Chem.: Part C – Nanomater. Interf. 111(17), 6245-6251 (2007) [CrossRef]
C. Loo et al., Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol. Cancer Res. Treat. 3, 33-40 (2004) [CrossRef]
K. Zwiorek et al., Gelatin nanoparticles as a new and simple gene delivery system. J. Pharm. Pharm. Sci. 7, 22-28 (2005)
C.J. Murphy et al., Gold nanoparticles in biology: beyond toxicity to cellular imaging. Acc. Chem. Res. 41, 1721-1730 (2008). [CrossRef]
M.P. Melancon et al., In vitro and in vivo targeting of hollow gold nanoshells directed at epidermal growth factor receptor for photothermal ablation therapy. Mol. Cancer Ther. 7, 1730-1739 (2008) [CrossRef]
J.A. Keelan, Nanotoxicology: nanoparticles versus the placenta. Nat. Nanotechnol. 6, 263-264 (2011) [CrossRef]
C. Chang, The immune effects of naturally occurring and synthetic nanoparticles. J. Autoimmun. 34, J234–246 (2010) [CrossRef]
L. Zhang et al., Gum arabic-coated magnetic nanoparticles for potential application in simultaneous magnetic targeting and tumor imaging. AAPS J. 11, 693-699 (2009) [CrossRef]
A.R. Shahverdi, Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomed. 3, 168-171 (2007) [CrossRef]
F.G. Rutberg et al., Effect of silver oxide nanoparticles on tumor growth in vivo. Doklady Biochem. Biophy. 421, 191-193 (2008) [CrossRef]
V. Ström et al., A novel and rapid method for quantification of magnetic nanoparticle cell interactions using a desktop susceptometer. Nanotechnol. 15,457-466 (2004) [CrossRef]
K. Buyukhatipoglu, A.M. Clyne, Superparamagnetic iron oxide nanoparticles change endothelial cell morphology and mechanics via reactive oxygen species formation. J. Biomed. Mater. Res.: Part A 96(1), 186-195 (2011) [CrossRef]
M.F. Tang, Recent progress in nanotechnology for cancer therapy. Chin. J. Cancer 29, 775-780 (2010) [CrossRef]