Study of aWind Pumping System in the Saharan Zone of Chad

Main Article Content

Fia Oung-Zetna
Boukar Michel
Djongyang Noel

Abstract

The wind-powered water pumping system at Gouro and Madadi in Chad is crucial to alleviate the chronic water shortage in these desert regions. The statistical Weibull distribution, using the Moroccan method, gives an annual wind speed scale of 6.55 m/s and 5.85 m/s for these sites, confirming the importance of studying a wind power system. Annual variations in wind speed are significant, and show a seasonal dependence on wind speed. The dominant wind direction is north-easterly, according to the wind rose diagrams, with high frequencies. Seasonal capacity factors for the three wind turbines at the Gouro site range from 0.55 to 0.77, and from 0.48 to 0.70 for the Madadi site, making these areas ideal for wind turbine installation. Monthly daily water flows for the Gouro site range from 8367 m³/day to 30371 m3/day for the three wind turbines. For the Madadi site, these values range from 8415 m3/day to 21391 m3/day. In view of these results, the wind-powered water pumping system can have a significant impact on the socio-economic development of these regions. By supplying drinking water and irrigating farmland, it can promote food security, economic growth and improved living conditions for local populations.

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
Fia Oung-Zetna, Boukar Michel, and Djongyang Noel , Trans., “Study of aWind Pumping System in the Saharan Zone of Chad”, IJEER, vol. 3, no. 4, pp. 6–13, Aug. 2024, doi: 10.54105/ijeer.D1035.03040824.
Section
Articles

How to Cite

[1]
Fia Oung-Zetna, Boukar Michel, and Djongyang Noel , Trans., “Study of aWind Pumping System in the Saharan Zone of Chad”, IJEER, vol. 3, no. 4, pp. 6–13, Aug. 2024, doi: 10.54105/ijeer.D1035.03040824.
Share |

References

Vennetier, M. (2012). Changement climatique et dépérissements forestiers : causes et conséquences

Anneville, O., Beniston, M., Gallina, N., Gillet, C., Jacquet, S., Lazzarotto, J., & Perroud, M. (2013). L’empreinte du changement climatique sur le Léman. Arch. Sci, 66, 157-172.

Raineau, L. (2011). Dossier « Adaptation aux changements climatiques » -Vers une transition énergétique ? Natures Sciences Sociétés, 19(2), 133-143. https://doi.org/10.1051/nss/2011143

Janin, P. (2010, February). Sécurité alimentaire et changement climatique : une lecture géopolitique des crises africaines et de leurs conséquences. In 4° Géopolitiques de Brest : Les enjeux géopolitiques du changement climatique, Bretagne Telecom-École Navale-ENSIETA-Université de Bretagne Occidentale.

Maley, J. (1980). Les changements climatiques de la fin du Tertiaire en Afrique : leur conséquence sur l’apparition du Sahara et de sa végétation. The Sahara and the Nile, 63-86.

Mekila, M., Abakar, G., Gapili, N., Diallo, A., & Guisse, a. caractérisation des sols sur le tracé de la grande muraille verte : cas des provinces de Wadi-Fira-Est et de l’Ennedi-est du Tchad.

Dougabka, D. (2022). Influence des variations climatiques sur la croissance et la qualité du bois de deux essences des zones semi-arides tchadiennes : Faidherbia albida (Del.) A. Chev. Et Balanites aegyptiaca (L.) Delile (Doctoral dissertation, Université de Montpellier).

Koren, I., Kaufman, Y. J., Washington, R., Todd, M. C., Redditch, Y., Martins, J. V., & Rosenfeld, D. (2006). The Bodélé depression: a single spot in the Sahara that provides most of the mineral dust to the Amazon forest. Environmental Research Letters, 1(1), 014005. https://doi.org/10.1088/1748-9326/1/1/014005

Soulouknga, M. H., Doka, S. Y., Revanna, N., et al. Analysis of wind speed data and wind energy potential in Faya-Largeau, Chad, using Weibull distribution. Renewable energy, 2018, vol. 121, p. 1-8. https://doi.org/10.1016/j.renene.2018.01.002

Nediguina, M. K., Abdraman, M. A., Barka, M., & Tahir, A. M. (2022). Electric Water Pumping Powered by a Wind Turbine in North East Chad. World, 7(2), 21-31

Maouedj, R., Bousalem, S., & Benyoucef, B. (2008). Optimisation d’un système de pompage éolien Application aux sites sahariens. Journal of Renewable Energies, 11(2), 239-250. https://doi.org/10.54966/jreen.v11i2.73

Mathew, S., & Pandey, K. P. (2002). Analysis of wind regimes for energy estimation. Renewable energy, 25(3), 381-399. https://doi.org/10.1016/S0960-1481(01)00063-5

Goezinne, F., & Eilering, F. (1984). Water pumping windmills with electrical transmission. Wind Engineering, 152-159.

Rétiveau, J. L. (2006). Analyse de données expérimentales et conception d'un générateur numérique de vitesses de vent (Doctoral dissertation, Université du Québec à Rimouski). https://doi.org/10.1522/24609430

Corotis, R. B., Sigl, A. B., & Klein, J. (1978). Probability models of wind velocity magnitude and persistence. Solar Energy, 20(6), 483-493. https://doi.org/10.1016/0038-092X(78)90065-8

Al Zohbi, G., Hendrick, P., & Bouillard, P. (2014). Évaluation du potentiel d’énergie éolienne au Liban. Journal of Renewable Energies, 17(1), 83-96. https://doi.org/10.54966/jreen.v17i1.425

Tizgui, I., Bouzahir, H., El Guezar, F., & Benaid, B. (2016, December). Estimation of electricity production for a Moroccan wind farm. In 2016 5th International Conference on Electronic Devices, Systems and Applications (ICEDSA) (pp. 1-4). IEEE. https://doi.org/10.1109/ICEDSA.2016.7818555

JC. Doran, MG. A Verholek MG. A: Note on Vertical Extrapolation Formulas for Weibull Velocity Distribution Parameters

EK. Akpinar, S. Akpinar: An assessment on seasonal analysis of wind energy characteristics and wind turbine characteristics. Energy Convers Manag 2005; 46:1848–67. https://doi.org/10.1016/j.enconman.2004.08.012

SS. Paul, SO. Oyedebo, Adaramola MS: Economic assessment of water pumping systems using wind energy conversions in the southern part of Nigeria. Energy Explor Exploit 2012 ; 30 :1–18. https://doi.org/10.1016/j.enconman.2004.08.012

M. Benabdelkader, A. Malek et B. Draoui : Perspective du pompage éolien appliqué à l’irrigation du palmier dattier dans la région de Béchar ; pp. 16, 2011

ALAHMAD, A. (2023). Using Medium Voltage Variable Frequency Drives Instead of Medium Voltage Switchgear in a Pump System. In Indian Journal of Signal Processing (Vol. 3, Issue 1, pp. 1–5). https://doi.org/10.54105/ijsp.b1014.023123

Barbade, Mr. G. M., Chandurkar, Mr. S. N., Shounak, Mr. V. S., Nimkar, Mr. V. R., & Patil, Mr. U. B. (2021). Automatic Water Tank Filling System with Water Level Indicator. In Indian Journal of Microprocessors and Microcontroller (Vol. 1, Issue 2, pp. 1–7). https://doi.org/10.54105/ijmm.b1711.091221

Ashokkumar, S., Sathiyaraj, S., Murugaboopathy, J., Nishalan, V., & Vasanth, I. (2020). Solar Water Pumping System for Agriculture. In International Journal of Innovative Technology and Exploring Engineering (Vol. 9, Issue 3, pp. 2964–2967). https://doi.org/10.35940/ijitee.c9201.019320

Chandrasekaran*, N., & Karthikeyan, A. (2019). Photovoltaic Pumping System Fed by DC-DC Push Pull Converter. In International Journal of Recent Technology and Engineering (IJRTE) (Vol. 8, Issue 4, pp. 1030–1034). https://doi.org/10.35940/ijrte.c6282.118419

Behera, D. D. (2019). Development And Performance Testing Of Solar Operated Insecticide And Pesticide Agro Spraying System. In International Journal of Engineering and Advanced Technology (Vol. 9, Issue 1, pp. 573–578). https://doi.org/10.35940/ijeat.a9694.109119