Surgical Data Science and Associated Techniques Facilitate the Development of Contemporary Equipment like Apple’s Vision Pro

Main Article Content

Vinothkumar Kolluru
Sudeep Mungara
Advaitha Naidu Chintakunta
Charan Sundar Telaganeni
Lokesh Kolluru

Abstract

Artificial Intelligence (AI) has revolutionized modern surgery by enhancing every stage of patient care, from preoperative planning to postoperative monitoring. This paper explores the impact of AI in conjunction with other technologies in surgical procedures, emphasizing their empirical basis and integration into clinical practice. AI's role in facilitating personalized treatment planning through a comprehensive analysis of patient data and imaging studies, utilizing techniques like natural language processing (NLP) to extract critical insights, reassures us of its positive impact on patient care. Real-time decision support systems powered by AI improve surgical precision, enabling surgeons to navigate complex procedures with enhanced accuracy and efficiency. Furthermore, AI-driven surgical robotics exemplify the precision achievable with these technologies, enabling minimally invasive procedures that minimize patient trauma and expedite recovery. Integrating AI with computer vision further enhances surgical capabilities by allowing machines to interpret visual data autonomously, like human perception. Convolutional Neural Networks (CNNs) are pivotal in image recognition and analysis, supporting tasks from anatomical landmark identification to surgical planning. Augmented Reality (AR), when combined with AI, enriches surgical practice by overlaying digital information onto real-world views, aiding in intraoperative guidance and educational training. Devices like Apple's Vision Pro (AVP) headset showcase the potential of mixed reality technologies in enhancing surgical precision. AVP's integration of spatial computing and AI algorithms allows for real-time data analysis and decision support, transforming surgical education and procedural outcomes. Despite the transformative potential, challenges, including ethical considerations, data privacy, and regulatory frameworks, must be addressed to ensure the responsible deployment of AI in surgical settings.  These challenges include mitigating biases in AI algorithms and ensuring equitable access to advanced technologies across diverse surgical specialties. The dynamic nature of AI in surgery necessitates continued research and development to refine AI applications, optimize surgical workflows, and improve patient outcomes globally. In combination with contemporary technologies, AI represents a paradigm shift in surgical practice, offering unprecedented opportunities to enhance patient care through personalized, precise, and efficient interventions. AI's ongoing evolution and integration in surgery promise to reshape healthcare's future, advancing clinical practice and medical education toward safer, more effective, and inclusive healthcare delivery systems.

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
Vinothkumar Kolluru, Sudeep Mungara, Advaitha Naidu Chintakunta, Charan Sundar Telaganeni, and Lokesh Kolluru , Trans., “Surgical Data Science and Associated Techniques Facilitate the Development of Contemporary Equipment like Apple’s Vision Pro”, IJPMH, vol. 5, no. 1, pp. 1–9, Jan. 2025, doi: 10.54105/ijpmh.D3648.0501124.
Section
Articles

How to Cite

[1]
Vinothkumar Kolluru, Sudeep Mungara, Advaitha Naidu Chintakunta, Charan Sundar Telaganeni, and Lokesh Kolluru , Trans., “Surgical Data Science and Associated Techniques Facilitate the Development of Contemporary Equipment like Apple’s Vision Pro”, IJPMH, vol. 5, no. 1, pp. 1–9, Jan. 2025, doi: 10.54105/ijpmh.D3648.0501124.
Share |

References

Acidi, B., Ghallab, M., Cotin, S., Vibert, E., & Golse, N. (2023). Augmented reality in liver surgery. J Visc Surg, 160(2), 118-126. https://doi.org/10.1016/j.jviscsurg.2023.01.008

Anwar, A., Zhang, Y., Zhang, Z., & Li, J. (2024). Artificial intelligence technology improves the accuracy of preoperative planning in primary total hip arthroplasty. Asian J Surg, 47(7), 2999-3006. https://doi.org/10.1016/j.asjsur.2024.01.133

Armstrong, D. G., Bazikian, S., Armstrong, A. A., Clerici, G., Casini, A., & Pillai, A. (2024). An Augmented Vision of Our Medical and Surgical Future, Today? J Diabetes Sci Technol, 18(4), 968-973. https://doi.org/10.1177/19322968241236458

Bektas, M., Burchell, G. L., Bonjer, H. J., & van der Peet, D. L. (2023). Machine learning applications in upper gastrointestinal cancer surgery: a systematic review. Surg Endosc, 37(1), 75-89. https://doi.org/10.1007/s00464-022-09516-z

Brockmeyer, P., Wiechens, B., & Schliephake, H. (2023). The Role of Augmented Reality in the Advancement of Minimally Invasive Surgery Procedures: A Scoping Review. Bioengineering (Basel), 10(4). https://doi.org/10.3390/bioengineering10040501

Chan, H. P., Samala, R. K., Hadjiiski, L. M., & Zhou, C. (2020). Deep Learning in Medical Image Analysis. Adv Exp Med Biol, 1213, 3-21. https://doi.org/10.1007/978-3-030-33128-3_1

Charles, Y. P., Lamas, V., & Ntilikina, Y. (2023). Artificial intelligence and treatment algorithms in spine surgery. Orthop Traumatol Surg Res, 109(1S), 103456. https://doi.org/10.1016/j.otsr.2022.103456

Chen, H. (2023). Application progress of artificial intelligence and augmented reality in orthopaedic arthroscopy surgery. J Orthop Surg Res, 18(1), 775. https://doi.org/10.1186/s13018-023-04280-9

Chen, P. C., Gadepalli, K., MacDonald, R., Liu, Y., Kadowaki, S., Nagpal, K., Kohlberger, T., Dean, J., Corrado, G. S., Hipp, J. D., Mermel, C. H., & Stumpe, M. C. (2019). An augmented reality microscope with real-time artificial intelligence integration for cancer diagnosis. Nat Med, 25(9), 1453-1457. https://doi.org/10.1038/s41591-019-0539-7

Condino, S., Montemurro, N., Cattari, N., D'Amato, R., Thomale, U., Ferrari, V., & Cutolo, F. (2021). Evaluation of a Wearable AR Platform for Guiding Complex Craniotomies in Neurosurgery. Ann Biomed Eng, 49(9), 2590-2605. https://doi.org/10.1007/s10439-021-02834-8

Esteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, M., Chou, K., Cui, C., Corrado, G., Thrun, S., & Dean, J. (2019). A guide to deep learning in healthcare. Nat Med, 25(1), 24-29. https://doi.org/10.1038/s41591-018-0316-z

Guerrero, D. T., Asaad, M., Rajesh, A., Hassan, A., & Butler, C. E. (2023). Advancing Surgical Education: The Use of Artificial Intelligence in Surgical Training. Am Surg, 89(1), 49-54. https://doi.org/10.1177/00031348221101503

Guni, A., Varma, P., Zhang, J., Fehervari, M., & Ashrafian, H. (2024). Artificial Intelligence in Surgery: The Future is Now. Eur Surg Res. https://doi.org/10.1159/000536393

Hirides, S., Hirides, H., Kalliopi, K., & Hirides, C. (2024). Artificial Intelligence and computer vision during surgery: discussing laparoscopic images with ChatGPT4 - Preliminary results. Surgical Science, 15, 169-181. https://doi.org/10.4236/ss.2024.153017

Le, K. D. R., Tay, S. B. P., Choy, K. T., Verjans, J., Sasanelli, N., & Kong, J. C. H. (2024). Applications of natural language processing tools in the surgical journey. Front Surg, 11, 1403540. https://doi.org/10.3389/fsurg.2024.1403540

Madani, A., Liu, Y., Pryor, A., Altieri, M., Hashimoto, D. A., & Feldman, L. (2024). SAGES surgical data science task force: enhancing surgical innovation, education and quality improvement through data science. Surg Endosc, 38(7), 3489-3493. https://doi.org/10.1007/s00464-024-10921-9

Maier-Hein, L., Vedula, S. S., Speidel, S., Navab, N., Kikinis, R., Park, A., Eisenmann, M., Feussner, H., Forestier, G., Giannarou, S., Hashizume, M., Katic, D., Kenngott, H., Kranzfelder, M., Malpani, A., Marz, K., Neumuth, T., Padoy, N., Pugh, C., . . . Jannin, P. (2017). Surgical data science for next-generation interventions. Nat Biomed Eng, 1(9), 691-696. https://doi.org/10.1038/s41551-017-0132-7

Masalkhi, M., Waisberg, E., Ong, J., Zaman, N., Sarker, P., Lee, A. G., & Tavakkoli, A. (2023). Apple Vision Pro for Ophthalmology and Medicine. Ann Biomed Eng, 51(12), 2643-2646. https://doi.org/10.1007/s10439-023-03283-1

Sonika Koganti, Advaitha Naidu Chintakunta, Vinoth Kumar Kolluru, Yudhisthir Nuthakki, Sudeep Mungara, Exploring Consumer Behaviors in E-Commerce Using Machine Learning, International Journal of Data Analytics Research and Development (IJDARD), 1(1), 2023, pp. 51–63. https://iaeme.com/Home/issue/IJDARD?Volume=1&Issue=1

Mascagni, P., Alapatt, D., Sestini, L., Altieri, M. S., Madani, A., Watanabe, Y., Alseidi, A., Redan, J. A., Alfieri, S., Costamagna, G., Boskoski, I., Padoy, N., & Hashimoto, D. A. (2022). Computer vision in surgery: from potential to clinical value. NPJ Digit Med, 5(1), 163. https://doi.org/10.1038/s41746-022-00707-5

McFarlane, M. (2020). Artificial intelligence: The new frontier in surgery. European Journal of Medical and Health Sciences, 2(4). https://doi.org/10.24018/ejmed.2020.2.4.401

Mohaideen, K., Negi, A., Verma, D. K., Kumar, N., Sennimalai, K., & Negi, A. (2022). Applications of artificial intelligence and machine learning in orthognathic surgery: A scoping review. J Stomatol Oral Maxillofac Surg, 123(6), e962-e972. https://doi.org/10.1016/j.jormas.2022.06.027

Olexa, J., Kim, K. T., Saadon, J. R., Rakovec, M., Evans, M., Cohen, J., & Cherian, J. (2004). Apple Vision Pro Augmented Reality-Assisted Minimally Invasive Surgical Treatment of Spinal Dural Arteriovenous Fistula. Cureus, 16(7). https://doi.org/0.7759/cureus.63657

Olexa, J., Trang, A., Cohen, J., Kim, K., Rakovec, M., Saadon, J., Sansur, C., Woodworth, G., Schwartzbauer, G., & Cherian, J. (2024). The Apple Vision Pro as a Neurosurgical Planning Tool: A Case Report. Cureus, 16(2), e54205. https://doi.org/10.7759/cureus.54205

Sánchez-Martínez, D., Padilla-Rojas, J., & Diaz-Chaker, W. (2024). How can Apple Vision Pro contribute to plastic surgery? Revista Española de Educación Médica, 2. https:// https://doi.org/10,6018/edumed/606141

Kolluru, V., Mungara, S., & Chintakunta, A. N. (2018). Adaptive learning systems: Harnessing AI for customized educational experiences. International Journal of Computational Science and Information Technology (IJCSITY), 6(1/2/3), August 2018. DOI: https://doi.org/10.5121/ijcsity.2018.6302

Syed, T. A., Siddiqui, M. S., Abdullah, H. B., Jan, S., Namoun, A., Alzahrani, A., Nadeem, A., & Alkhodre, A. B. (2022). In-Depth Review of Augmented Reality: Tracking Technologies, Development Tools, AR Displays, Collaborative AR, and Security Concerns. Sensors (Basel), 23(1). https://doi.org/10.3390/s23010146

Waisberg, E., Ong, J., Masalkhi, M., Zaman, N., Sarker, P., Lee, A. G., & Tavakkoli, A. (2024a). Apple Vision Pro and the advancement of medical education with extended reality. Can Med Educ J, 15(1), 89-90. https://doi.org/10.36834/cmej.77634

Waisberg, E., Ong, J., Masalkhi, M., Zaman, N., Sarker, P., Lee, A. G., & Tavakkoli, A. (2024b). The future of ophthalmology and vision science with the Apple Vision Pro. Eye (Lond), 38(2), 242-243. https://doi.org/10.1038/s41433-023-02688-5

Wei, N. J., Dougherty, B., Myers, A., & Badawy, S. M. (2018). Using Google Glass in Surgical Settings: Systematic Review. JMIR Mhealth Uhealth, 6(3), e54. https://doi.org/10.2196/mhealth.9409

Kolluru, V., Mungara, S., & Chintakunta, A. N. (2019). Securing the IoT ecosystem: Challenges and innovations in smart device cybersecurity. International Journal on Cryptography and Information Security (IJCIS), 9(1/2), 37. https://doi.org/10.5121/ijcis.2019.9203

Williams, M. A., McVeigh, J., Handa, A. I., & Lee, R. (2020). Augmented reality in surgical training: a systematic review. Postgrad Med J, 96(1139), 537-542. https://doi.org/10.1136/postgradmedj-2020-137600

Zhang, C., Hallbeck, M. S., Salehinejad, H., & Thiels, C. (2024). The integration of artificial intelligence in robotic surgery: A narrative review. Surgery. https://doi.org/10.1016/j.surg.2024.02.005

Kolluru, V., Mungara, S., & Chintakunta, A. N. (2020). Combating misinformation with machine learning: Tools for trustworthy news consumption. Machine Learning and Applications: An International Journal (MLAIJ), 7(3/4), 28. DOI: https://doi.org/10.5121/mlaij.2020.7403

M, S., & S, G. (2019). Identification and Classification of Cataract Stages in Old Age People Using Deep Learning Algorithm. In International Journal of Innovative Technology and Exploring Engineering (Vol. 8, Issue 10, pp. 2767–2772). https://doi.org/10.35940/ijitee.j9582.0881019

Nithya, K. N., & Suresh, P. (2019). Diagnosis of Vertebral Column Disorders using A Novel Sprint Algorithm. In International Journal of Recent Technology and Engineering (IJRTE) (Vol. 8, Issue 3, pp. 8920–8924). https://doi.org/10.35940/ijrte.c5630.098319

Sharma, P., & Site, S. (2022). A Comprehensive Study on Different Machine Learning Techniques to Predict Heart Disease. In Indian Journal of Artificial Intelligence and Neural Networking (Vol. 2, Issue 3, pp. 1–7). https://doi.org/10.54105/ijainn.c1046.042322

Sutabri, T., Selvam, R. P., Shankar, K., Nguyen, P. T., Hashim, W., & Maseleno, A. (2019). Machine Learning for Healthcare Diagnostics. In International Journal of Engineering and Advanced Technology (Vol. 8, Issue 6s2, pp. 999–1001). https://doi.org/10.35940/ijeat.f1304.0886s219

Khan, N. D., Younas, M., Khan, M. T., Duaa, & Zaman, A. (2021). The Role of Big Data Analytics in Healthcare. In International Journal of Soft Computing and Engineering (Vol. 11, Issue 1, pp. 1–7). https://doi.org/10.35940/ijsce.a3523.0911121

Most read articles by the same author(s)

1 2 3 4 5 > >>