Surgical Data Science and Associated Techniques Facilitate the Development of Contemporary Equipment like Apple’s Vision Pro
Main Article Content
Abstract
Artificial Intelligence (AI) has revolutionized modern surgery by enhancing every stage of patient care, from preoperative planning to postoperative monitoring. This paper explores the impact of AI in conjunction with other technologies in surgical procedures, emphasizing their empirical basis and integration into clinical practice. AI's role in facilitating personalized treatment planning through a comprehensive analysis of patient data and imaging studies, utilizing techniques like natural language processing (NLP) to extract critical insights, reassures us of its positive impact on patient care. Real-time decision support systems powered by AI improve surgical precision, enabling surgeons to navigate complex procedures with enhanced accuracy and efficiency. Furthermore, AI-driven surgical robotics exemplify the precision achievable with these technologies, enabling minimally invasive procedures that minimize patient trauma and expedite recovery. Integrating AI with computer vision further enhances surgical capabilities by allowing machines to interpret visual data autonomously, like human perception. Convolutional Neural Networks (CNNs) are pivotal in image recognition and analysis, supporting tasks from anatomical landmark identification to surgical planning. Augmented Reality (AR), when combined with AI, enriches surgical practice by overlaying digital information onto real-world views, aiding in intraoperative guidance and educational training. Devices like Apple's Vision Pro (AVP) headset showcase the potential of mixed reality technologies in enhancing surgical precision. AVP's integration of spatial computing and AI algorithms allows for real-time data analysis and decision support, transforming surgical education and procedural outcomes. Despite the transformative potential, challenges, including ethical considerations, data privacy, and regulatory frameworks, must be addressed to ensure the responsible deployment of AI in surgical settings. These challenges include mitigating biases in AI algorithms and ensuring equitable access to advanced technologies across diverse surgical specialties. The dynamic nature of AI in surgery necessitates continued research and development to refine AI applications, optimize surgical workflows, and improve patient outcomes globally. In combination with contemporary technologies, AI represents a paradigm shift in surgical practice, offering unprecedented opportunities to enhance patient care through personalized, precise, and efficient interventions. AI's ongoing evolution and integration in surgery promise to reshape healthcare's future, advancing clinical practice and medical education toward safer, more effective, and inclusive healthcare delivery systems.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
Acidi, B., Ghallab, M., Cotin, S., Vibert, E., & Golse, N. (2023). Augmented reality in liver surgery. J Visc Surg, 160(2), 118-126. https://doi.org/10.1016/j.jviscsurg.2023.01.008
Anwar, A., Zhang, Y., Zhang, Z., & Li, J. (2024). Artificial intelligence technology improves the accuracy of preoperative planning in primary total hip arthroplasty. Asian J Surg, 47(7), 2999-3006. https://doi.org/10.1016/j.asjsur.2024.01.133
Armstrong, D. G., Bazikian, S., Armstrong, A. A., Clerici, G., Casini, A., & Pillai, A. (2024). An Augmented Vision of Our Medical and Surgical Future, Today? J Diabetes Sci Technol, 18(4), 968-973. https://doi.org/10.1177/19322968241236458
Bektas, M., Burchell, G. L., Bonjer, H. J., & van der Peet, D. L. (2023). Machine learning applications in upper gastrointestinal cancer surgery: a systematic review. Surg Endosc, 37(1), 75-89. https://doi.org/10.1007/s00464-022-09516-z
Brockmeyer, P., Wiechens, B., & Schliephake, H. (2023). The Role of Augmented Reality in the Advancement of Minimally Invasive Surgery Procedures: A Scoping Review. Bioengineering (Basel), 10(4). https://doi.org/10.3390/bioengineering10040501
Chan, H. P., Samala, R. K., Hadjiiski, L. M., & Zhou, C. (2020). Deep Learning in Medical Image Analysis. Adv Exp Med Biol, 1213, 3-21. https://doi.org/10.1007/978-3-030-33128-3_1
Charles, Y. P., Lamas, V., & Ntilikina, Y. (2023). Artificial intelligence and treatment algorithms in spine surgery. Orthop Traumatol Surg Res, 109(1S), 103456. https://doi.org/10.1016/j.otsr.2022.103456
Chen, H. (2023). Application progress of artificial intelligence and augmented reality in orthopaedic arthroscopy surgery. J Orthop Surg Res, 18(1), 775. https://doi.org/10.1186/s13018-023-04280-9
Chen, P. C., Gadepalli, K., MacDonald, R., Liu, Y., Kadowaki, S., Nagpal, K., Kohlberger, T., Dean, J., Corrado, G. S., Hipp, J. D., Mermel, C. H., & Stumpe, M. C. (2019). An augmented reality microscope with real-time artificial intelligence integration for cancer diagnosis. Nat Med, 25(9), 1453-1457. https://doi.org/10.1038/s41591-019-0539-7
Condino, S., Montemurro, N., Cattari, N., D'Amato, R., Thomale, U., Ferrari, V., & Cutolo, F. (2021). Evaluation of a Wearable AR Platform for Guiding Complex Craniotomies in Neurosurgery. Ann Biomed Eng, 49(9), 2590-2605. https://doi.org/10.1007/s10439-021-02834-8
Esteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, M., Chou, K., Cui, C., Corrado, G., Thrun, S., & Dean, J. (2019). A guide to deep learning in healthcare. Nat Med, 25(1), 24-29. https://doi.org/10.1038/s41591-018-0316-z
Guerrero, D. T., Asaad, M., Rajesh, A., Hassan, A., & Butler, C. E. (2023). Advancing Surgical Education: The Use of Artificial Intelligence in Surgical Training. Am Surg, 89(1), 49-54. https://doi.org/10.1177/00031348221101503
Guni, A., Varma, P., Zhang, J., Fehervari, M., & Ashrafian, H. (2024). Artificial Intelligence in Surgery: The Future is Now. Eur Surg Res. https://doi.org/10.1159/000536393
Hirides, S., Hirides, H., Kalliopi, K., & Hirides, C. (2024). Artificial Intelligence and computer vision during surgery: discussing laparoscopic images with ChatGPT4 - Preliminary results. Surgical Science, 15, 169-181. https://doi.org/10.4236/ss.2024.153017
Le, K. D. R., Tay, S. B. P., Choy, K. T., Verjans, J., Sasanelli, N., & Kong, J. C. H. (2024). Applications of natural language processing tools in the surgical journey. Front Surg, 11, 1403540. https://doi.org/10.3389/fsurg.2024.1403540
Madani, A., Liu, Y., Pryor, A., Altieri, M., Hashimoto, D. A., & Feldman, L. (2024). SAGES surgical data science task force: enhancing surgical innovation, education and quality improvement through data science. Surg Endosc, 38(7), 3489-3493. https://doi.org/10.1007/s00464-024-10921-9
Maier-Hein, L., Vedula, S. S., Speidel, S., Navab, N., Kikinis, R., Park, A., Eisenmann, M., Feussner, H., Forestier, G., Giannarou, S., Hashizume, M., Katic, D., Kenngott, H., Kranzfelder, M., Malpani, A., Marz, K., Neumuth, T., Padoy, N., Pugh, C., . . . Jannin, P. (2017). Surgical data science for next-generation interventions. Nat Biomed Eng, 1(9), 691-696. https://doi.org/10.1038/s41551-017-0132-7
Masalkhi, M., Waisberg, E., Ong, J., Zaman, N., Sarker, P., Lee, A. G., & Tavakkoli, A. (2023). Apple Vision Pro for Ophthalmology and Medicine. Ann Biomed Eng, 51(12), 2643-2646. https://doi.org/10.1007/s10439-023-03283-1
Sonika Koganti, Advaitha Naidu Chintakunta, Vinoth Kumar Kolluru, Yudhisthir Nuthakki, Sudeep Mungara, Exploring Consumer Behaviors in E-Commerce Using Machine Learning, International Journal of Data Analytics Research and Development (IJDARD), 1(1), 2023, pp. 51–63. https://iaeme.com/Home/issue/IJDARD?Volume=1&Issue=1
Mascagni, P., Alapatt, D., Sestini, L., Altieri, M. S., Madani, A., Watanabe, Y., Alseidi, A., Redan, J. A., Alfieri, S., Costamagna, G., Boskoski, I., Padoy, N., & Hashimoto, D. A. (2022). Computer vision in surgery: from potential to clinical value. NPJ Digit Med, 5(1), 163. https://doi.org/10.1038/s41746-022-00707-5
McFarlane, M. (2020). Artificial intelligence: The new frontier in surgery. European Journal of Medical and Health Sciences, 2(4). https://doi.org/10.24018/ejmed.2020.2.4.401
Mohaideen, K., Negi, A., Verma, D. K., Kumar, N., Sennimalai, K., & Negi, A. (2022). Applications of artificial intelligence and machine learning in orthognathic surgery: A scoping review. J Stomatol Oral Maxillofac Surg, 123(6), e962-e972. https://doi.org/10.1016/j.jormas.2022.06.027
Olexa, J., Kim, K. T., Saadon, J. R., Rakovec, M., Evans, M., Cohen, J., & Cherian, J. (2004). Apple Vision Pro Augmented Reality-Assisted Minimally Invasive Surgical Treatment of Spinal Dural Arteriovenous Fistula. Cureus, 16(7). https://doi.org/0.7759/cureus.63657
Olexa, J., Trang, A., Cohen, J., Kim, K., Rakovec, M., Saadon, J., Sansur, C., Woodworth, G., Schwartzbauer, G., & Cherian, J. (2024). The Apple Vision Pro as a Neurosurgical Planning Tool: A Case Report. Cureus, 16(2), e54205. https://doi.org/10.7759/cureus.54205
Sánchez-Martínez, D., Padilla-Rojas, J., & Diaz-Chaker, W. (2024). How can Apple Vision Pro contribute to plastic surgery? Revista Española de Educación Médica, 2. https:// https://doi.org/10,6018/edumed/606141
Kolluru, V., Mungara, S., & Chintakunta, A. N. (2018). Adaptive learning systems: Harnessing AI for customized educational experiences. International Journal of Computational Science and Information Technology (IJCSITY), 6(1/2/3), August 2018. DOI: https://doi.org/10.5121/ijcsity.2018.6302
Syed, T. A., Siddiqui, M. S., Abdullah, H. B., Jan, S., Namoun, A., Alzahrani, A., Nadeem, A., & Alkhodre, A. B. (2022). In-Depth Review of Augmented Reality: Tracking Technologies, Development Tools, AR Displays, Collaborative AR, and Security Concerns. Sensors (Basel), 23(1). https://doi.org/10.3390/s23010146
Waisberg, E., Ong, J., Masalkhi, M., Zaman, N., Sarker, P., Lee, A. G., & Tavakkoli, A. (2024a). Apple Vision Pro and the advancement of medical education with extended reality. Can Med Educ J, 15(1), 89-90. https://doi.org/10.36834/cmej.77634
Waisberg, E., Ong, J., Masalkhi, M., Zaman, N., Sarker, P., Lee, A. G., & Tavakkoli, A. (2024b). The future of ophthalmology and vision science with the Apple Vision Pro. Eye (Lond), 38(2), 242-243. https://doi.org/10.1038/s41433-023-02688-5
Wei, N. J., Dougherty, B., Myers, A., & Badawy, S. M. (2018). Using Google Glass in Surgical Settings: Systematic Review. JMIR Mhealth Uhealth, 6(3), e54. https://doi.org/10.2196/mhealth.9409
Kolluru, V., Mungara, S., & Chintakunta, A. N. (2019). Securing the IoT ecosystem: Challenges and innovations in smart device cybersecurity. International Journal on Cryptography and Information Security (IJCIS), 9(1/2), 37. https://doi.org/10.5121/ijcis.2019.9203
Williams, M. A., McVeigh, J., Handa, A. I., & Lee, R. (2020). Augmented reality in surgical training: a systematic review. Postgrad Med J, 96(1139), 537-542. https://doi.org/10.1136/postgradmedj-2020-137600
Zhang, C., Hallbeck, M. S., Salehinejad, H., & Thiels, C. (2024). The integration of artificial intelligence in robotic surgery: A narrative review. Surgery. https://doi.org/10.1016/j.surg.2024.02.005
Kolluru, V., Mungara, S., & Chintakunta, A. N. (2020). Combating misinformation with machine learning: Tools for trustworthy news consumption. Machine Learning and Applications: An International Journal (MLAIJ), 7(3/4), 28. DOI: https://doi.org/10.5121/mlaij.2020.7403
M, S., & S, G. (2019). Identification and Classification of Cataract Stages in Old Age People Using Deep Learning Algorithm. In International Journal of Innovative Technology and Exploring Engineering (Vol. 8, Issue 10, pp. 2767–2772). https://doi.org/10.35940/ijitee.j9582.0881019
Nithya, K. N., & Suresh, P. (2019). Diagnosis of Vertebral Column Disorders using A Novel Sprint Algorithm. In International Journal of Recent Technology and Engineering (IJRTE) (Vol. 8, Issue 3, pp. 8920–8924). https://doi.org/10.35940/ijrte.c5630.098319
Sharma, P., & Site, S. (2022). A Comprehensive Study on Different Machine Learning Techniques to Predict Heart Disease. In Indian Journal of Artificial Intelligence and Neural Networking (Vol. 2, Issue 3, pp. 1–7). https://doi.org/10.54105/ijainn.c1046.042322
Sutabri, T., Selvam, R. P., Shankar, K., Nguyen, P. T., Hashim, W., & Maseleno, A. (2019). Machine Learning for Healthcare Diagnostics. In International Journal of Engineering and Advanced Technology (Vol. 8, Issue 6s2, pp. 999–1001). https://doi.org/10.35940/ijeat.f1304.0886s219
Khan, N. D., Younas, M., Khan, M. T., Duaa, & Zaman, A. (2021). The Role of Big Data Analytics in Healthcare. In International Journal of Soft Computing and Engineering (Vol. 11, Issue 1, pp. 1–7). https://doi.org/10.35940/ijsce.a3523.0911121