A Survey on Liver Cancer Detection Using Hyperfusion of CNN and SVM in Machine Learning

Main Article Content

Sasikala R
Kalaiselvi N

Abstract

Since liver cancer ranks among of the most aggressive renditions of the disease, improving patient outcomes requires early identification. We propose an inventive tactic to liver cancer detection by integrating CNN and SVM. CNNs, known for their powerful feature extraction capabilities, are particularly effective in analysing complex medical images. SVMs, on the other hand, are efficient classifiers that can separate data points in high-dimensional spaces with accuracy. By merging the feature extraction strength of CNN with the classification efficiency of SVM, the proposed model aims to enhance liver cancer detection accuracy and robustness. The experimental results reveal that the fused CNN-SVM model significantly surpasses the performance of standalone CNN and SVM models, achieving a high detection accuracy of 95.2%. This hybrid method offers a promising direction for improving the precision of computer-aided diagnosis systems, contributing to more effective and reliable liver cancer detection methods that can assist healthcare professionals in making timely decisions.

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
Sasikala R and Kalaiselvi N , Trans., “A Survey on Liver Cancer Detection Using Hyperfusion of CNN and SVM in Machine Learning”, IJPMH, vol. 5, no. 2, pp. 20–23, Jan. 2025, doi: 10.54105/ijpmh.B1051.05020125.
Section
Articles

How to Cite

[1]
Sasikala R and Kalaiselvi N , Trans., “A Survey on Liver Cancer Detection Using Hyperfusion of CNN and SVM in Machine Learning”, IJPMH, vol. 5, no. 2, pp. 20–23, Jan. 2025, doi: 10.54105/ijpmh.B1051.05020125.
Share |

References

Afshar, P., Mohammadi, A., & Plataniotis, K. N. (2019).Capsule networks for brain tumour classification based on MRI images and coarse tumour boundaries. Expert Systems with Applications, 142, 112948. DOI: https://doi.org/10.1109/ICASSP.2019.8683759

Arora, R., Puri, A., & Gaur, G. (2020). Deep learning for liver cancer diagnosis: A review. Journal of Cancer Research and Therapeutics, 16(4), 825–832. DOI: https://doi.org/10.1007/s00330-019-06205-9

Bhandari, A., Koppen, J., & Martinus, H. (2020). CNN-SVM hybrid model for classification of liver diseases from CT images. IEEE Access, 8, 42021-42030

Chen, H., Zhang, Y., & Liang, W. (2019). Liver cancer detection using CNN and SVM based on CT images. Journal of Medical Imaging and Health Informatics, 9(5), 968–974

Choi, J. H., & Oh, J. S. (2021). A robust hybrid CNN-SVM model for automated liver tumour detection. Computer Methods and Programs in Biomedicine, 196, 105595.

Hekler, A., Utikal, J. S., Enk, A. H., et al. (2019). Superior skin cancer classification by the combination of human and artificial intelligence. European Journal of Cancer, 120, 114–121. DOI: https://doi.org/10.1016/j.ejca.2019.07.019

Hu, Z., Lei, B., Wang, T., & Chen, S. (2020). Automated liver tumour detection with deep learning using multi-scale feature fusion. Journal of Medical Systems, 44(9), 155. DOI: https://doi.org/10.3389/fonc.2024.1415859

Li, J., Chen, J., & Zhou, Y. (2021). Liver cancer detection using 3D convolutional neural networks and multi-view CT imaging. Medical Image Analysis, 70, 102017

Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., et al. (2017). A survey on deep learning in medical image analysis. Medical Image Analysis, 42, 60–88.16. DOI: https://doi.org/10.1016/j.media.2017.07.005

Chang, Y. J., Huang, S. F., & Hsu, C. Y. (2020). A deep learning approach for automatic segmentation of liver tumour in CT images. Computers in Biology and Medicine, 120, 103746

Kumar, S., Gupta, S., & Gupta, A. (2020). A comprehensive review on deep learning for liver disease diagnosis using medical imaging. International Journal of Biomedical Engineering and Technology, 34(1), 12–29

Jin, H. L., Wang, S., & Du, X. (2020). A novel deep learning-based framework for liver cancer diagnosis using CT images. BioMed Research International, 2020, 4359890

Rajinikanth, V., Kadry, S., &

Damas, S. (2020). Automated detection and segmentation of liver tumour in computed tomography images: A

study with hybrid model. Expert Systems with Applications, 149, 113274.

Esteva, A., Kuprel, B., Novoa, R. A., KO, J., Swetter, S. M., Blau, H. M., & Thrun, S. (2017). Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542(7639), 115–118. DOI: https://doi.org/10.1038/nature21056

Coudray, N., Ocampo, P. S., Sakellaropoulos, T., Narula, N., Snuderl, M., Fenyo, D., et al. (2018). Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nature Medicine, 24(10), 1559–1567. DOI: https://doi.org/10.1038/s41591-018-0177-5

Dou, Q., Yu, L., Chen, H., Jin, Y., Yang, X., Qin, J., et al. (2016). 3D deeply supervised network for automated segmentation of volumetric medical images. Medical Image Analysis, 41, 40–54. DOI: https://doi.org/10.1016/j.media.2017.05.001

Tajbakhsh, N., Jeyaseelan, L., Li, Q., Chiang, J. N., Wu, Z., & Ding, X. (2020). Embracing imperfect datasets: A review of deep learning solutions for medical image segmentation. Medical Image Analysis, 63, 101693. DOI: https://doi.org/10.1016/j.media.2020.101693

Korfiatis, P., Kline, T. L., Akkus, Z., Philbrick, K., & Erickson, B. J. (2016). Residual deep convolutional neural network predicts MGMT methylation status. Journal of Digital Imaging, 29(5), 748–757. DOI: https://doi.org/10.1007/s10278-017-0009-z

Roth, H. R., Farag, A., Lu, L., Turkbey, E. B., &summers, R. M. (2016). Deep convolutional networks for pancreas segmentation in CT imaging. Medical Image Analysis, 27, 94–107. DOI: https://doi.org/10.1117/12.2081420

Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A., Bengio, Y., et al. (2017). Brain tumour segmentation with deep neural networks. Medical Image Analysis, 35, 18–31. DOI: https://doi.org/10.1016/j.media.2016.05.004

Liu, F., Jang, H., Kijowski, R., Bradshaw, T., & McMillan, A. B. (2018). Deep learning MR imaging-based attenuation correction for brain PET/MR. NeuroImage, 147, 515–525. DOI: https://doi.org/10.1148/radiol.2017170700

Deshmukh, S. P., Shah, D. D., & Matte, P. N. (2022). A survey on liver cancer detection: Based on deep learning technology. Springer. DOI: https://doi.org/10.1007/978-981-16-7985-8_67

Setio, A. A. A., Traverso, A., de Bel, T., Berens, R., van den Bogaard, C., Cerello, P., et al. (2017). Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: The LUNA16 challenge. Medical Image Analysis, 42, 1–13. DOI: https://doi.org/10.1016/j.media.2017.06.015

Singh, B. P., & Barik, R. (2023). Image Segmentation Based Automated Skin Cancer Detection Technique. In Indian Journal of Image Processing and Recognition (Vol. 3, Issue 5, pp. 1–6). DOI: https://doi.org/10.54105/ijipr.H9682.083523

Srinidhi, K., Priya, G. J., Rishitha, M., Vishnu, K. T., & Anuradha, G. (2020). Detection of Melanoma Skin Cancer using Convolutional Neural Network algorithm. In International Journal of Innovative Technology and Exploring Engineering (Vol. 9, Issue 7, pp. 115–118). DOI: https://doi.org/10.35940/ijitee.F4636.059720

Kanani, P., & Padole, Dr. M. (2019). Deep Learning to Detect Skin Cancer using Google Colab. In International Journal of Engineering and Advanced Technology (Vol. 8, Issue 6, pp. 2176–2183). DOI: https://doi.org/10.35940/ijeat.F8587.088619

Hemalatha N, Nausheeda B.S, Athul K.P, Navaneeth, Detection of Skin Cancer using Deep CNN. (2020). In International Journal of Recent Technology and Engineering (Vol. 8, Issue 5S, pp. 22–24). DOI: https://doi.org/10.35940/ijrte.E1005.0285S20

Nandhini, MS. S., Sofiyan, M. A., Kumar, S., & Afridi, A. (2019). Skin Cancer Classification using Random Forest. In International Journal of Management and Humanities (Vol. 4, Issue 3, pp. 39–42). DOI: https://doi.org/10.35940/ijmh.C0434.114319

Most read articles by the same author(s)

1 2 3 4 5 > >>