A Survey on Liver Cancer Detection Using Hyperfusion of CNN and SVM in Machine Learning
Main Article Content
Abstract
Since liver cancer ranks among of the most aggressive renditions of the disease, improving patient outcomes requires early identification. We propose an inventive tactic to liver cancer detection by integrating CNN and SVM. CNNs, known for their powerful feature extraction capabilities, are particularly effective in analysing complex medical images. SVMs, on the other hand, are efficient classifiers that can separate data points in high-dimensional spaces with accuracy. By merging the feature extraction strength of CNN with the classification efficiency of SVM, the proposed model aims to enhance liver cancer detection accuracy and robustness. The experimental results reveal that the fused CNN-SVM model significantly surpasses the performance of standalone CNN and SVM models, achieving a high detection accuracy of 95.2%. This hybrid method offers a promising direction for improving the precision of computer-aided diagnosis systems, contributing to more effective and reliable liver cancer detection methods that can assist healthcare professionals in making timely decisions.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
Afshar, P., Mohammadi, A., & Plataniotis, K. N. (2019).Capsule networks for brain tumour classification based on MRI images and coarse tumour boundaries. Expert Systems with Applications, 142, 112948. DOI: https://doi.org/10.1109/ICASSP.2019.8683759
Arora, R., Puri, A., & Gaur, G. (2020). Deep learning for liver cancer diagnosis: A review. Journal of Cancer Research and Therapeutics, 16(4), 825–832. DOI: https://doi.org/10.1007/s00330-019-06205-9
Bhandari, A., Koppen, J., & Martinus, H. (2020). CNN-SVM hybrid model for classification of liver diseases from CT images. IEEE Access, 8, 42021-42030
Chen, H., Zhang, Y., & Liang, W. (2019). Liver cancer detection using CNN and SVM based on CT images. Journal of Medical Imaging and Health Informatics, 9(5), 968–974
Choi, J. H., & Oh, J. S. (2021). A robust hybrid CNN-SVM model for automated liver tumour detection. Computer Methods and Programs in Biomedicine, 196, 105595.
Hekler, A., Utikal, J. S., Enk, A. H., et al. (2019). Superior skin cancer classification by the combination of human and artificial intelligence. European Journal of Cancer, 120, 114–121. DOI: https://doi.org/10.1016/j.ejca.2019.07.019
Hu, Z., Lei, B., Wang, T., & Chen, S. (2020). Automated liver tumour detection with deep learning using multi-scale feature fusion. Journal of Medical Systems, 44(9), 155. DOI: https://doi.org/10.3389/fonc.2024.1415859
Li, J., Chen, J., & Zhou, Y. (2021). Liver cancer detection using 3D convolutional neural networks and multi-view CT imaging. Medical Image Analysis, 70, 102017
Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., et al. (2017). A survey on deep learning in medical image analysis. Medical Image Analysis, 42, 60–88.16. DOI: https://doi.org/10.1016/j.media.2017.07.005
Chang, Y. J., Huang, S. F., & Hsu, C. Y. (2020). A deep learning approach for automatic segmentation of liver tumour in CT images. Computers in Biology and Medicine, 120, 103746
Kumar, S., Gupta, S., & Gupta, A. (2020). A comprehensive review on deep learning for liver disease diagnosis using medical imaging. International Journal of Biomedical Engineering and Technology, 34(1), 12–29
Jin, H. L., Wang, S., & Du, X. (2020). A novel deep learning-based framework for liver cancer diagnosis using CT images. BioMed Research International, 2020, 4359890
Rajinikanth, V., Kadry, S., &
Damas, S. (2020). Automated detection and segmentation of liver tumour in computed tomography images: A
study with hybrid model. Expert Systems with Applications, 149, 113274.
Esteva, A., Kuprel, B., Novoa, R. A., KO, J., Swetter, S. M., Blau, H. M., & Thrun, S. (2017). Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542(7639), 115–118. DOI: https://doi.org/10.1038/nature21056
Coudray, N., Ocampo, P. S., Sakellaropoulos, T., Narula, N., Snuderl, M., Fenyo, D., et al. (2018). Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nature Medicine, 24(10), 1559–1567. DOI: https://doi.org/10.1038/s41591-018-0177-5
Dou, Q., Yu, L., Chen, H., Jin, Y., Yang, X., Qin, J., et al. (2016). 3D deeply supervised network for automated segmentation of volumetric medical images. Medical Image Analysis, 41, 40–54. DOI: https://doi.org/10.1016/j.media.2017.05.001
Tajbakhsh, N., Jeyaseelan, L., Li, Q., Chiang, J. N., Wu, Z., & Ding, X. (2020). Embracing imperfect datasets: A review of deep learning solutions for medical image segmentation. Medical Image Analysis, 63, 101693. DOI: https://doi.org/10.1016/j.media.2020.101693
Korfiatis, P., Kline, T. L., Akkus, Z., Philbrick, K., & Erickson, B. J. (2016). Residual deep convolutional neural network predicts MGMT methylation status. Journal of Digital Imaging, 29(5), 748–757. DOI: https://doi.org/10.1007/s10278-017-0009-z
Roth, H. R., Farag, A., Lu, L., Turkbey, E. B., &summers, R. M. (2016). Deep convolutional networks for pancreas segmentation in CT imaging. Medical Image Analysis, 27, 94–107. DOI: https://doi.org/10.1117/12.2081420
Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A., Bengio, Y., et al. (2017). Brain tumour segmentation with deep neural networks. Medical Image Analysis, 35, 18–31. DOI: https://doi.org/10.1016/j.media.2016.05.004
Liu, F., Jang, H., Kijowski, R., Bradshaw, T., & McMillan, A. B. (2018). Deep learning MR imaging-based attenuation correction for brain PET/MR. NeuroImage, 147, 515–525. DOI: https://doi.org/10.1148/radiol.2017170700
Deshmukh, S. P., Shah, D. D., & Matte, P. N. (2022). A survey on liver cancer detection: Based on deep learning technology. Springer. DOI: https://doi.org/10.1007/978-981-16-7985-8_67
Setio, A. A. A., Traverso, A., de Bel, T., Berens, R., van den Bogaard, C., Cerello, P., et al. (2017). Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: The LUNA16 challenge. Medical Image Analysis, 42, 1–13. DOI: https://doi.org/10.1016/j.media.2017.06.015
Singh, B. P., & Barik, R. (2023). Image Segmentation Based Automated Skin Cancer Detection Technique. In Indian Journal of Image Processing and Recognition (Vol. 3, Issue 5, pp. 1–6). DOI: https://doi.org/10.54105/ijipr.H9682.083523
Srinidhi, K., Priya, G. J., Rishitha, M., Vishnu, K. T., & Anuradha, G. (2020). Detection of Melanoma Skin Cancer using Convolutional Neural Network algorithm. In International Journal of Innovative Technology and Exploring Engineering (Vol. 9, Issue 7, pp. 115–118). DOI: https://doi.org/10.35940/ijitee.F4636.059720
Kanani, P., & Padole, Dr. M. (2019). Deep Learning to Detect Skin Cancer using Google Colab. In International Journal of Engineering and Advanced Technology (Vol. 8, Issue 6, pp. 2176–2183). DOI: https://doi.org/10.35940/ijeat.F8587.088619
Hemalatha N, Nausheeda B.S, Athul K.P, Navaneeth, Detection of Skin Cancer using Deep CNN. (2020). In International Journal of Recent Technology and Engineering (Vol. 8, Issue 5S, pp. 22–24). DOI: https://doi.org/10.35940/ijrte.E1005.0285S20
Nandhini, MS. S., Sofiyan, M. A., Kumar, S., & Afridi, A. (2019). Skin Cancer Classification using Random Forest. In International Journal of Management and Humanities (Vol. 4, Issue 3, pp. 39–42). DOI: https://doi.org/10.35940/ijmh.C0434.114319