Applications of Microfluidics in Biomedical and Pharmaceutical Fields -An Overview

Main Article Content

Stefna Varghese
Dr. Poonam Parashar
Dr. Pragya

Abstract

The precise manipulation of fluids at the microscale level within minuscule channels measuring tens to hundreds of micrometres is the subject of the multifaceted field of microfluidics. This technology has transformed the pharmaceutical industry by enabling miniaturised, high-throughput, and economical drug discovery, formulation, and delivery solutions. Creating sophisticated drug delivery systems like nanoparticles and liposomes has become far simpler because this method can precisely control fluid dynamics, enabling faster reaction kinetics and better drug encapsulation. Beyond drug formulation, microfluidic platforms enable disease modelling, toxicity assessment, and pharmacokinetic/pharmacodynamic analysis, providing a quick and efficient alternative to conventional techniques. In addition, devices like microfluidic chips combine several analysis processes into a single device with less reagent consumption and enhanced research encouragement. Furthermore, microfluidics is vital in personalised medicine and point-of-care diagnostics, offering rapid, more accurate testing for a customised treatment strategy. The increased use of microfluidics in pharmaceutical research is promising to facilitate faster drug discovery, enhance individualised medicine, and improve point-of-care diagnostic testing. This paper discusses the definition, importance, and uses of microfluidics in the pharmaceutical field based on its implications for the future of drug discovery and healthcare.

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
Stefna Varghese, Dr. Poonam Parashar, and Dr. Pragya , Trans., “Applications of Microfluidics in Biomedical and Pharmaceutical Fields -An Overview”, IJPMH, vol. 5, no. 4, pp. 5–10, May 2025, doi: 10.54105/ijpmh.D1066.05040525.
Section
Articles

How to Cite

[1]
Stefna Varghese, Dr. Poonam Parashar, and Dr. Pragya , Trans., “Applications of Microfluidics in Biomedical and Pharmaceutical Fields -An Overview”, IJPMH, vol. 5, no. 4, pp. 5–10, May 2025, doi: 10.54105/ijpmh.D1066.05040525.
Share |

References

Harink, B., Le Gac, S., Truckenmüller, R., Van Blitterswijk, C., Habibovic, P. Regeneration-on-a-chip? the perspectives on use of microfluidics in regenerative medicine. Vol. 13, Lab on a Chip. Royal Society of Chemistry; 2013. p. 3512–28. DOI: https://doi.org/10.1039/C3LC50293G

Trinh, T.N.D., Do, H.D.K., Nam, N.N., Dan, T.T., Trinh, K.T.L., Lee, N.Y. Droplet-Based Microfluidics: Applications in Pharmaceuticals. Vol. 16, Pharmaceuticals. 2023. DOI: https://doi.org/10.3390/ph16070937

Matuła, K., Rivello, F., Huck, W.T.S. Single-Cell Analysis Using Droplet Microfluidics. Vol. 4, Advanced Biosystems. 2020. DOI: https://doi.org/10.1002/adbi.201900188

Mark, D., Haeberle, S., Roth, G., Stetten, F. V., Zengerle, R. Microfluidic lab-on-a-chip platforms: Requirements, characteristics and applications. Chem Soc Rev. 2010 Feb 24;39(3):1153–82. DOI: https://doi.org/10.1039/B820557B

Raj, M. K., Chakraborty, S. PDMS microfluidics: A mini review. Vol. 137, Journal of Applied Polymer Science. John Wiley and Sons Inc.; 2020. DOI: https://doi.org/10.1002/app.48958

Narayanamurthy, V., Jeroish, Z.E., Bhuvaneshwari, K.S., Bayat, P., Premkumar, R., Samsuri, F., et al. Advances in passively driven microfluidics and lab-on-chip devices: A comprehensive literature review and patent analysis. RSC Adv. 2020 Mar 23;10(20):11652–80. DOI: https://doi.org/10.1039/D0RA00263A

Tarn, M.D., Lopez-Martinez, M.J., Pamme, N. On-chip processing of particles and cells via multilaminar flow streams. Vol. 406, Analytical and Bioanalytical Chemistry. Springer Verlag; 2014. p. 139–61. DOI: https://doi.org/10.1007/s00216-013-7363-6

You, I., Yun, N., Lee, H. Surface-tension-confined microfluidics and their applications. Vol. 14, ChemPhysChem. 2013. p. 471–81. DOI: https://doi.org/10.1002/cphc.201200929

Ong, S.E., Zhang, S., Du, H., Fu, Y. Fundamental principles and applications of microfluidic systems. Vol. 13, Frontiers in Bioscience. 2008. DOI: https://doi.org/10.2741/2883

Gharib, G., Bütün, İ., Muganlı, Z., Kozalak, G., Namlı, İ., Sarraf, S.S., et al. Biomedical Applications of Microfluidic Devices: A Review. Vol. 12, Biosensors. MDPI; 2022. DOI: https://doi.org/10.3390/bios12111023

Lambert, M., Grossier, R., Lagaize, M., Bactivelane, T., Heresanu, V., Robert, B., et al. Modular microfluidic platform for solubility measurement, nucleation statistics and polymorph screening of active pharmaceutical ingredients: Irbesartan, Rimonabant, Aripiprazole and Sulfathiazole. DOI: https://doi.org/10.1016/j.jcrysgro.2023.127252

Elvira, K.S. Microfluidic technologies for drug discovery and development: friend or foe? Vol. 42, Trends in Pharmacological Sciences. Elsevier Ltd; 2021. p. 518–26. DOI: https://doi.org/10.1016/j.tips.2021.04.009

Niculescu, A.G., Chircov, C., Bîrcă, A.C., Grumezescu, A.M. Fabrication and applications of microfluidic devices: A review. Vol. 22, International Journal of Molecular

Sciences. MDPI AG; 2021. p. 1–26. DOI: http://doi.org/10.3390/ijms22042011

Mosavati, B., Oleinikov, A., Du, E. 3D microfluidics-assisted modeling of glucose transport in placental malaria. Sci Rep. 2022 Dec 1;12(1). DOI: https://doi.org/10.1038/s41598-022-19422-y

Miny, L., Maisonneuve, B.G.C., Quadrio, I., Honegger, T. Modeling Neurodegenerative Diseases Using In Vitro Compartmentalized Microfluidic Devices. Vol. 10, Frontiers in Bioengineering and Biotechnology. Frontiers Media S.A.; 2022. DOI: https://doi.org/10.3389/fbioe.2022.919646

Ai, Y., Zhang, F., Wang, C., Xie, R., Liang, Q. Recent progress in lab-on-a-chip for pharmaceutical analysis and pharmacological/toxicological test. Vol. 117, TrAC - Trends in Analytical Chemistry. Elsevier B.V.; 2019. p. 215–30. DOI: https://doi.org/10.1016/j.trac.2019.06.026

Sung, J.H., Kam, C., Shuler, M.L. A microfluidic device for a pharmacokinetic-pharmacodynamic (PK-PD) model on a chip. Lab on a Chip. 2010;10(4):446–55. DOI: https://doi.org/10.1039/B917763A

Fei, J., Wu, L., Zhang, Y., Zong, S., Wang, Z., Cui, Y. Pharmacokinetics-on-a-Chip Using Label-Free SERS Technique for Programmable Dual-Drug Analysis. ACS Sens. 2017 Jun 23;2(6):773–80. DOI: https://doi.org/10.1021/acssensors.7b00122

Contreras-Naranjo, J.C., Wu, H.J., Ugaz, V.M. Microfluidics for exosome isolation and analysis: Enabling liquid biopsy for personalized medicine. Vol. 17, Lab on a Chip. Royal Society of Chemistry; 2017. p. 3558–77. DOI: https://doi.org/10.1039/C7LC00592J

Ayuso, J.M., Virumbrales-Muñoz, M., Lang, J.M., Beebe, D.J. A role for microfluidic systems in precision medicine. Vol. 13, Nature Communications. Nature Research; 2022. DOI: https://doi.org/10.1038/s41467-022-30384-7

Özyurt, C., Uludağ, İ., İnce, B., Sezgintürk, M.K. Lab-on-a-chip systems for cancer biomarker diagnosis. Vol. 226, Journal of Pharmaceutical and Biomedical Analysis. 2023. DOI: https://doi.org/10.1016/j.jpba.2023.115266

Mathur, L., Ballinger, M., Utharala, R., Merten, C.A. Microfluidics as an Enabling Technology for Personalized Cancer Therapy. Small [Internet]. 2020 Mar 20;16(9). DOI: https://doi.org/10.1002/smll.201904321

Wei, Y., Lin, M., Luo, S., Muhammad, S., Abbasi, T., Tan, L., et al. Auto-ICell: An Accessible and Cost-Effective Integrative Droplet Microfluidic System for Real-Time Single-Cell Morphological and Apoptotic Analysis. DOI: https://doi.org/10.48550/arXiv.2311.02927

Mollica, H., Palomba, R., Primavera, R., Decuzzi, P. Two-channel compartmentalized microfluidic chip for real-time monitoring of the metastatic cascade. DOI: https://doi.org/10.1021/acsbiomaterials.9b00697

Lipreri, M.V., Totaro, M.T., Boos, J.A., Basile, M.S., Baldini, N., Avnet, S. A Novel Microfluidic Platform for Personalized Anticancer Drug Screening Through Image Analysis. Micromachines (Basel). 2024 Dec 1;15(12). DOI: https://doi.org/10.3390/mi15121521

Arshavsky-Graham, S., Segal, E. Lab-on-a-Chip Devices for Point-of-Care Medical Diagnostics. In: Advances in Biochemical Engineering/Biotechnology. Springer Science and Business Media Deutschland GmbH; 2022. p. 247–65. DOI: https://doi.org/10.1007/10_2020_127

Sista, R., Hua, Z., Thwar, P., Sudarsan, A., Srinivasan, V., Eckhardt, A., et al. Development of a digital microfluidic platform for point of care testing. Lab on a Chip. 2008;8(12):2091–104. DOI: https://doi.org/10.1039/b814922d

Li, B., Li, L., Guan, A., Dong, Q., Ruan, K., Hu, R., et al. A Smartphone Controlled Handheld Microfluidic Liquid Handling System. DOI: https://doi.org/10.1039/C4LC00227J

Gupta, S., Ramesh, K., Ahmed, S., Kakkar, V. Lab-on-chip technology: A review on design trends and future scope in biomedical applications. Vol. 8, International Journal of Bio-Science and Bio-Technology. Science and Engineering Research Support Society; 2016. p. 311–22. DOI: http://dx.doi.org/10.14257/ijbsbt.2016.8.5.28

Yazdian, K. S., Afzalian, A., Shirinichi, F., Keshavarz, M. M. Microfluidics for core-shell drug carrier particles - a review. Vol. 11, RSC Advances. Royal Society of Chemistry; 2020. p. 229–49. DOI: https://doi.org/10.1039/D0RA08607J

Fabozzi, A., Della, S. F., di Gennaro, M., Barretta, M., Longobardo, G., Solimando, N., et al. Design of functional nanoparticles by microfluidic platforms as advanced drug delivery systems for cancer therapy. Vol. 23, Lab on a Chip. Royal Society of Chemistry; 2023. p. 1389–409. DOI: https://doi.org/10.1039/D2LC00933A

Sartipzadeh, O., Naghib, S.M., Haghiralsadat, F., Shokati, F., Rahmanian, M. Microfluidic-assisted synthesis and modeling of stimuli-responsive monodispersed chitosan microgels for drug delivery applications. Sci Rep. 2022 Dec 1;12(1). DOI: https://doi.org/10.1038/s41598-022-12031-9

Cui, P., Wang, S. Application of microfluidic chip technology in pharmaceutical analysis: A review. Journal of Pharmaceutical Analysis. 2019 Aug 1;9(4):238–47. DOI: https://doi.org/10.1016/j.jpha.2018.12.001

Toh, Y.C., Lim, T.C., Tai, D., Xiao, G., Van Noort, D., Yu, H. A microfluidic 3D hepatocyte chip for drug toxicity testing. Lab on a Chip. 2009;9(14):2026–35. DOI: https://doi.org/10.1039/B900912D

Tirella, A., Marano, M., Vozzi, F., Ahluwalia, A. A microfluidic gradient maker for toxicity testing of bupivacaine and lidocaine. Toxicology in Vitro. 2008 Dec 1;22(8):1957–64. DOI: https://doi.org/10.1016/j.tiv.2008.09.016

Nishat Sayyed, Vidit Patil, Mohammed Painter, Deepali Nayak, Nuclei Detection for Drug Discovery using Deep Learning. (2019). In International Journal of Recent Technology and Engineering (Vol. 8, Issue 2S8, pp. 1289–1294). DOI: https://doi.org/10.35940/ijrte.b1055.0882s819

M, Sushmitha., James. A, J., Narayanamurthy, V., N, Padmasini., & Samsuri, F. (2019). Microfluidic Microchannel (Size And Shape) for Single Cell Analysis by Numerical Optimization: Lateral Trapping Method. In International Journal of Engineering and Advanced Technology (Vol. 9, Issue 1s4, pp. 747–752). DOI: https://doi.org/10.35940/ijeat.a1136.1291s419

Boya, V. R., & Rao, Dr. K. S. S. (2019). Operational Excellence in Pharmaceuticals – The Role of Human Resource Management Practices in Pharmaceutical Industry, Hyderabad, India. In International Journal of Innovative Technology and Exploring Engineering (Vol. 8, Issue 12, pp. 383–387). DOI: https://doi.org/10.35940/ijitee.l3296.1081219

Most read articles by the same author(s)

1 2 3 4 5 > >>