Efficient Market Dynamics: Unraveling Informational Efficiency in UK Horse Racing Betting Markets Through Betfair's Time Series Analysis
Main Article Content
Abstract
Using Betfair's time series data, an analysis of the United Kingdom (UK) horse racing market reveals an interesting paradox: a market with short tails, rapidly decaying autocorrelations, and no long-term memory. There seems to be a remarkably high level of informational efficiency in betting exchange returns, in contrast to financial assets that are characterized by heavy tails and volatility clustering. The generalized Gaussian unconditional distribution with a light tail points to a market where knowledge is quickly assimilated and reflected in prices. Thisis further supported by the extremely quick fading of autocorrelations and the absence of gain- loss asymmetry. Therefore, in addition to measuring long-range memory, the Hurst exponent also shows mean reversion, a sign that markets respond quickly to fresh information.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
REFERENCES
V. Kanaparthi, “Exploring the Impact of Blockchain, AI, and ML on Financial Accounting Efficiency and Transformation,” Jan. 2024, Accessed: Feb. 04, 2024. [Online]. Available: DOI: https://arxiv.org/abs/2401.15715v1
V. Kanaparthi, “AI-based Personalization and Trust in Digital Finance,” Jan. 2024, Accessed: Feb. 04, 2024. [Online]. Available: https://arxiv.org/abs/2401.15700v1
V. Kanaparthi, “Evaluating Financial Risk in the Transition from EONIA to ESTER: A TimeGAN Approach with Enhanced VaR Estimations,” Jan. 2024. DOI: http://doi.org/10.21203/RS.3.RS-3906541/V1.
V. Kanaparthi, “Robustness Evaluation of LSTM-based Deep Learning Models for Bitcoin Price Prediction in the Presence of Random Disturbances,” Jan. 2024, DOI: http://doi.org/10.21203/RS.3.RS-3906529/V1.
“Generative AI: The New Frontier in Wall Street Innovation - New York Tech Media.” (accessed Feb. 04, 2024). https://nytech.media/generative-ai-the-new-frontier-in-wall-street-innovation/
N. Marwah, V. K. Singh, G. S. Kashyap, and S. Wazir, “An analysis of the robustness of UAV agriculture field coverage using multi-agent reinforcement learning,” International Journal of Information Technology (Singapore), vol. 15, no. 4, pp. 2317–2327, May 2023, DOI: http://doi.org/10.1007/s41870-023-01264-0.
G. S. Kashyap, K. Malik, S. Wazir, and R. Khan, “Using Machine Learning to Quantify the Multimedia Risk Due to Fuzzing,” Multimedia Tools and Applications, vol. 81, no. 25, pp. 36685–36698, Oct. 2022, DOI: http://doi.org/10.1007/s11042-021-11558-9.
G. S. Kashyap, D. Mahajan, O. C. Phukan, A. Kumar, A. E. I. Brownlee, and J. Gao, “From Simulations to Reality: Enhancing Multi-Robot Exploration for Urban Search and Rescue,” Nov. 2023, Accessed: Dec. 03, 2023. [Online]. Available: https://arxiv.org/abs/2311.16958v1
S. Wazir, G. S. Kashyap, and P. Saxena, “MLOps: A Review,” Aug. 2023, Accessed: Sep. 16, 2023. [Online]. Available: https://arxiv.org/abs/2308.10908v1
M. Kanojia, P. Kamani, G. S. Kashyap, S. Naz, S. Wazir, and A. Chauhan, “Alternative Agriculture Land-Use Transformation Pathways by Partial-Equilibrium Agricultural Sector Model: A Mathematical Approach,” Aug. 2023, Accessed: Sep. 16, 2023. [Online]. Available: https://arxiv.org/abs/2308.11632v1
H. Habib, G. S. Kashyap, N. Tabassum, and T. Nafis, “Stock Price Prediction Using Artificial Intelligence Based on LSTM– Deep Learning Model,” in Artificial Intelligence & Blockchain in Cyber Physical Systems: Technologies & Applications, CRC Press, 2023, pp. 93–99. DOI: http://doi.org/10.1201/9781003190301-6.
G. S. Kashyap, A. E. I. Brownlee, O. C. Phukan, K. Malik, and S. Wazir, “Roulette-Wheel Selection-Based PSO Algorithm for Solving the Vehicle Routing Problem with Time Windows,” Jun. 2023, Accessed: Jul. 04, 2023. [Online]. Available: https://arxiv.org/abs/2306.02308v1
S. Wazir, G. S. Kashyap, K. Malik, and A. E. I. Brownlee, “Predicting the Infection Level of COVID-19 Virus Using Normal Distribution-Based Approximation Model and PSO,” Springer, Cham, 2023, pp. 75–91. DOI: http://doi.org/10.1007/978-3-031-33183-1_5.
G. S. Kashyap et al., “Detection of a facemask in real-time using deep learning methods: Prevention of Covid 19,” Jan. 2024, Accessed: Feb. 04, 2024. [Online]. Available: https://arxiv.org/abs/2401.15675v1
G. S. Kashyap, A. Siddiqui, R. Siddiqui, K. Malik, S. Wazir, and A. E. I. Brownlee, “Prediction of Suicidal Risk Using Machine Learning Models.” Dec. 25, 2021. Accessed: Feb. 04, 2024. [Online]. Available: https://www.taylorfrancis.com/chapters/edit/10.1201/9781003433941-11/prediction-suicidal-risk-using-machine-learning-models-gautam-siddharth-kashyap-ayesha-siddiqui-ramsha-siddiqui-karan-malik-samar-wazir-alexander-brownlee
V. Kanaparthi, “Transformational application of Artificial Intelligence and Machine learning in Financial Technologies and Financial services: A bibliometric review,” Jan. 2024, DOI: https://doi.org/10.48550/arXiv.2401.15710.
V. K. Kanaparthi, “Navigating Uncertainty: Enhancing Markowitz Asset Allocation Strategies through Out-of-Sample Analysis,” Dec. 2023, DOI: http://doi.org/10.20944/PREPRINTS202312.0427.V1.
V. K. Kanaparthi, “Examining the Plausible Applications of Artificial Intelligence & Machine Learning in Accounts Payable Improvement,” FinTech, vol. 2, no. 3, pp. 461–474, Jul. 2023, DOI: http://doi.org/10.3390/fintech2030026.
V. Kanaparthi, “Credit Risk Prediction using Ensemble Machine Learning Algorithms,” in 6th International Conference on Inventive Computation Technologies, ICICT 2023 - Proceedings, 2023, pp. 41–47. DOI: http://doi.org/10.1109/ICICT57646.2023.10134486.
V. Kanaparthi, “Examining Natural Language Processing Techniques in the Education and Healthcare Fields,” International Journal of Engineering and Advanced Technology, vol. 12, no. 2, pp. 8–18, Dec. 2022, DOI: http://doi.org/10.35940/ijeat.b3861.1212222.
J. Braverman and H. J. Shaffer, “How do gamblers start gambling: Identifying behavioural markers for high-
risk internet gambling,” European
Journal of Public Health, vol. 22, no. 2, pp. 273–278, Apr. 2012, DOI: http://doi.org/10.1093/eurpub/ckp232.
H. M. Gray, D. A. Laplante, and H. J. Shaffer, “Behavioral characteristics of Internet gamblers who trigger corporate responsible gambling interventions,” Psychology of Addictive Behaviors, vol. 26, no. 3, pp. 527–535, Sep. 2012, DOI: http://doi.org/10.1037/a0028545.
M. D. Griffiths and M. Auer, “The irrelevancy of game-type in the acquisition, development, and maintenance of problem gambling,” Frontiers in Psychology, vol. 3, no. JAN, p. 41957, Jan. 2013, DOI: http://doi.org/10.3389/fpsyg.2012.00621.
N. Hing et al., “How structural changes in online gambling are shaping the contemporary experiences and behaviours of online gamblers: an interview study,” BMC Public Health, vol. 22, no. 1, pp. 1–16, Dec. 2022, DOI: http://doi.org/10.1186/s12889-022-14019-6.
D. Cliff, “BBE: Simulating the Microstructural Dynamics of an In-Play Betting Exchange via Agent-Based Modelling,” SSRN Electronic Journal, May 2021, DOI: https://doi.org/10.48550/arXiv.2105.08310.
M. Chegere, P. Falco, M. Nieddu, L. Pandolfi, and M. Stein, “It ’ s a Sure Win ! in betting behavior,” CSEF WORKING PAPERS, vol. 655, 2022, Accessed: Feb. 04, 2024. [Online]. Available: https://www.iris.unina.it/handle/11588/904765
G. Axén and D. Cortis, “Hedging on betting markets,” Risks, vol. 8, no. 3, pp. 1–14, Aug. 2020, DOI: http://doi.org/10.3390/risks8030088.
R. Bunker and T. Susnjak, “The Application of Machine Learning Techniques for Predicting Match Results in Team Sport: A Review,” Journal of Artificial Intelligence Research, vol. 73. AI Access Foundation, pp. 1285–1322, Apr. 14, 2022. DOI: http://doi.org/10.1613/jair.1.13509.
“Betting Exchanges: The Future of Sports Betting? | International Journal of Sport Finance | EBSCOhost.” (accessed Feb. 04, 2024). https://research.rug.nl/en/publications/betting-exchanges-the-future-of-sports-betting
R. Casadesus-Masanell and N. Campbell, “Platform competition: Betfair and the UK market for sports betting,” Journal of Economics and Management Strategy, vol. 28, no. 1, pp. 29–40, Jan. 2019, DOI: http://doi.org/10.1111/jems.12310.
B. B. Mandelbrot, “The variation of certain speculative prices,” in Fractals and Scaling in Finance, Springer, New York, NY, 1997, pp. 371–418. DOI: http://doi.org/10.1007/978-1-4757-2763-0_14.
R. H. Koning and R. Zijm, “Betting market efficiency and prediction in binary choice models,” Annals of Operations Research, vol. 325, no. 1, pp. 135–148, Jun. 2023, DOI: http://doi.org/10.1007/s10479-022-04722-3.
M. Cain, L. David, and D. Peel, “The favourite-longshot bias and market efficiency in UK football betting,” Scottish Journal of Political Economy, vol. 47, no. 1, pp. 25–36, Feb. 2000, DOI: http://doi.org/10.1111/1467-9485.00151.
K. Croxson and J. J. Reade, “Exchange vs . Dealers : A High-Frequency Analysis of In-Play Betting Prices,” Working Paper, pp. 1–46, 2011, Accessed: Feb. 04, 2024. [Online]. Available: https://www.researchgate.net/publication/228720836
E. Franck, E. Verbeek, and S. Nüesch, “Prediction accuracy of different market structures - bookmakers versus a betting exchange,” International Journal of Forecasting, vol. 26, no. 3, pp. 448–459, Jul. 2010, DOI: http://doi.org/10.1016/j.ijforecast.2010.01.004.
P. F. Meier, R. Flepp, and E. P. Franck, “Are Sports Betting Markets Semi-Strong Efficient? Evidence from the COVID-19 Pandemic,” SSRN Electronic Journal, Aug. 2020, https://www.zora.uzh.ch/id/eprint/206447/1/IJSF_Meier_Flepp_Franck.pdf
M. A. Smith, D. Paton, and L. V. Williams, “Market efficiency in person-to-person betting,” Economica, vol. 73, no. 292, pp. 673–689, Nov. 2006, DOI: http://doi.org/10.1111/j.1468-0335.2006.00518.x.
S. J. Hardiman, P. Richmond, and S. Hutzler, “Long-range correlations in an online betting exchange for a football tournament,” New Journal of Physics, vol. 12, no. 10, p. 105001, Oct. 2010, DOI: http://doi.org/10.1088/1367-2630/12/10/105001.
P. A. Bebbington, “Studies in informational price formation, prediction markets, and trading,” UCL (University College London), Nov. 2017. Accessed: Feb. 04, 2024. [Online]. Available: http://discovery.ucl.ac.uk/1563501/1/thesis.pdf
V. Restocchi, “It Takes All Sorts: the Complexity of Prediction Markets,” 2018. https://www.researchgate.net/publication/328782332_It_takes_all_sorts_the_complexity_of_prediction_markets
R. Cont, “Empirical properties of asset returns: stylized facts and statistical issues,” Quantitative Finance, vol. 1, no. 2, pp. 223–236, Mar. 2001, DOI: http://doi.org/10.1088/1469-7688/1/2/304.
S. Resnick and C. Stărică, “Smoothing the Hill Estimator,” Advances in Applied Probability, vol. 29, no. 1, pp. 271–293, Mar. 1997, DOI: http://doi.org/10.2307/1427870.
J. Danielsson, lerby murat Ergun, L. de Haan, and C. G. de Vries, “Tail Index Estimation: Quantile Driven Threshold Selection,” SSRN Electronic Journal, Jan. 2016, https://eprints.lse.ac.uk/66193/1/__lse.ac.uk_storage_LIBRARY_Secondary_libfile_shared_repository_Content_LSE%20SRC%20Discussions%20papers_2016_Mar_LEQSPaper26.pdf
Audifas Said, A. E. S., Mayala, Dr. N., & Komba, Dr. L. (2023). Assessement of Risk Control Activities on Financial Performance: A Case of Diocesian Secondary Schools in Moshi, Tanzania. In Indian Journal of Economics and Finance (Vol. 3, Issue 2, pp. 53–59). DOI: https://doi.org/10.54105/ijef.b2556.113223
Roy, P., & Singh, S. K. (2024). A Critical Review of Research on Financial Risk Tolerance. In International Journal of Management and Humanities (Vol. 10, Issue 5, pp. 17–30). DOI: https://doi.org/10.35940/ijmh.e1684.10050124
Kirina, L., Nazarova, N., Takhumova, O., Semenova, L., & Goryacheva, A. (2019). Method Development to Assess the Enterprise Financial Risks. In International Journal of Innovative Technology and Exploring Engineering (Vol. 9, Issue 2, pp. 1540–1543). DOI: https://doi.org/10.35940/ijitee.b7238.129219