Analysis of Velocity Measurement of Radar Signal in Space Vehicle Application using VLSI Chip
Main Article Content
Abstract
The objective of the project is to design a low cost Spectral Monitor for a Space vehicle velocity measurement application, based on Doppler Shift principle by generating an radar signal source from earth station towards moving target device in space and processing received high speed analog 200MHz radar signal from target vehicle device through Antenna, analog pre-processing and FPGA based spectral analyzer. The hardware reconfigurable spectral analyzer design consist of ADC(500MSPS) Interface block, SRAM Memory(1024×16) block, Radix-2 FFT (16 bit DSP block) and LCD Display (Monitoring) driver algorithm implemented On-Chip SOC-FPGA system. The proposed algorithm can be used to meet the need of many real time application such as space exploration, wideband communication, command and control application. The desired algorithm is implemented on-chip reconfigurable hardware SOC-FPGA while keeping the cost, power and area of device low compared to general purpose processor and Embedded based microcontroller. The code architecture is described using hardware description language, VHDL and synthesized and simulated using Xilinx 12.2 ISE Design suite.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.