Synthesis, Characterization, and Evaluation of the Antibacterial Activity of Some Novel Thiazolo- [1,2,4] Triazolo [1,5-a] Pyridine Derivatives

Main Article Content

Dr. Pendam Prashanth Babu
Dr. Pingili Upendra
Dr. Dharanipathi Venkateshwar Rao

Abstract

A novel four-step scientific protocol has been reported for the synthesis of thiazolo- [1,2,4] triazolo[1,5-a] pyridine and its derivatives (6a-c) as target moieties in good overall yields by using 1-(2-(Trifluoromethyl)-5-methylthiazol-4- yl) ethanone (1) as starting compound. The IR, PMR, Mass spectral data, and elemental analysis validated the chemical structures of all the intermediates and products. Furthermore, the newly synthesised intermediates and final derivatives were screened for their antibacterial activity against different bacterial strains, and it was found that a few of them exhibited noteworthy antibacterial activity with varying degrees of disparity.

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
Dr. Pendam Prashanth Babu, Dr. Pingili Upendra, and Dr. Dharanipathi Venkateshwar Rao , Trans., “Synthesis, Characterization, and Evaluation of the Antibacterial Activity of Some Novel Thiazolo- [1,2,4] Triazolo [1,5-a] Pyridine Derivatives”, IJAC, vol. 5, no. 2, pp. 1–6, Oct. 2025, doi: 10.54105/ijac.B2030.05021025.
Section
Articles
Author Biography

Dr. Pingili Upendra, Assistant Professor, Department of Chemistry, Government Degree College for Women (Autonomous), Nalgonda, Hyderabad (Telangana), India.



How to Cite

[1]
Dr. Pendam Prashanth Babu, Dr. Pingili Upendra, and Dr. Dharanipathi Venkateshwar Rao , Trans., “Synthesis, Characterization, and Evaluation of the Antibacterial Activity of Some Novel Thiazolo- [1,2,4] Triazolo [1,5-a] Pyridine Derivatives”, IJAC, vol. 5, no. 2, pp. 1–6, Oct. 2025, doi: 10.54105/ijac.B2030.05021025.
Share |

References

Musarurwa, H. & Tavengwa, N. T. (2021) Sustainable extraction of pesticides in food and environmental samples using emerging green adsorbents. Sustainable Chemistry and Pharmacy (CSP) (Vol. 24, Issue 12, Article number 100545).

DOI: https://doi.org/10.1016/j.jfca.2019.103314

Rodrigues, L. D. Sunil, D. Chaithra, D. Bhagavath, P. (2020), 1,2,3/1,2,4-Triazole containing liquid crystalline materials: An up-to-date review of their synthetic design and mesomorphic behaviour, Journal of Molecular Liquids (JML) (Vol. 297, Issue 1, Article number 111909. DOI: https://doi.org/10.1016/j.molliq.2019.111909.

Sharma, A. Agrahari, A. K. Rajkhowa, S. Tiwari, V. K. (2022). Emerging impact of triazoles as anti-tubercular agent. European Journal of Medicinal Chemistry (EJMC) (Vol. 238, Issue-5, Article number 114454). DOI: https://doi.org/10.1016/j.ejmech.2022.114454

Zhang, S. Xu, Z. Gao, C. Ren, Q.C. Chang, L. Lv, Z.S. (2017). Triazole derivatives and their anti-tubercular activity. European Journal of Medicinal Chemistry (EJMC) (Vol. 138, Issue 29, pp. 501-513). DOI: https://doi.org/10.1016/j.ejmech.2017.06.051

Feng, Gao. Tengfei, W. Jiaqi, X. Gang, H. (2019). Antibacterial activity study of 1,2,4-triazole derivatives. European Journal of Medicinal Chemistry (EJMC) (Vol. 173, Issue 1, pp. 274-281) DOI: https://doi.org/10.1016/j.ejmech.2019.04.043

Li, Z. Cao, Y. Zhan, P. Pannecouque, C. Balzarini, J. De Clercq, E. Liu, X. (2013). Synthesis and anti-HIV evaluation of novel 1,2,4-triazole derivatives as potential non-nucleoside HIV-1 reverse transcriptase inhibitors. Letters in Drug Design & Discovery (LDDD) (Vol. 10, Issue 1, pp. 27-34). DOI: https://doi.org/10.2174/ 15701801380 4142429

Pinto, A. Chan, R. C. (2009). Lack of allergic cross-reactivity between fluconazole and voriconazole. Antimicrobial Agents and Chemotherapy (AAC) (Vol. 53, Issue-4, pp. 1715-1716. DOI: https://doi.org/:10.1128/ AAC.01500-08

Smith, J., Safdar, N., Knasinski, V., Simmons, W., Bhavnani, S. M., Ambrose, P. G. (2006). Voriconazole herapeutic drug monitoring. Antimicrobial Agents and Chemotherapy (AAC) (Vol. 50, Issue-4, pp. 1570-1572).

DOI: https://doi.org/10.1128/AAC.50.4.1570-1572.2006

Graci, J. D. Cameron, C. E. (2006). Mechanisms of action of ribavirin against distinct viruses. Reviews in Medical Virology (RMV) (Vol. 16, Issue 1, pp 37-48). DOI: https://doi.org/10.1002/rmv.483

Wellington, K., Plosker, G. L. (2002). Rizatriptan: an update of its use in the management of migraine. Drugs (Vol. 62, Issue-10, pp. 1539-1574) DOI: https://doi.org/10.2165/00003495-200262100-00007

Slomovitz, B. M. Filiaci, V. L. Walker, J. L. Taub, M.C. Finkelstein, K. A. Moroney, J. W. (2022). A randomized phase II trial of everolimus and letrozole or hormonal therapy in women with advanced, persistent or recurrent endometrial carcinoma: A GOG Foundation study. Gynecologic Oncology (GO). (Vol. 164, Issue-3, pp. 481-491). DOI: https://doi.org/10.1016/j.ygyno.2021.12.031.

Kucukguzel, S.G and Cikla-Suzgun, P. (2015). Recent advances in bioactive 1,2,4-triazole-3-thiones. European Journal of Medicinal Chemistry (EJMC) (Vol. 97, pp. 830-870). DOI: https://doi.org/10.1016/j.ejmech.2014.11.033

Takahashi, K. Yamagishi, G. Hiramatsu, T. Hosoya, A. Onoe, K. Doi, H. (2011). Practical synthesis of precursor of [N-methyl-11C] vorozole, an efficient PET tracer targeting aromatase in the brain. Bioorganic Medicinal Chemistry (BMC). (Vol. 19, Issue- 4, pp. 1464-1470).

DOI: https://doi.org/10.1016/j.bmc.2010.12.057

Striano, P., McMurray, R., Santamarina, E., Falip, M. (2018). Rufinamide for the treatment of Lennox-Gastaut syndrome: evidence from clinical trials and clinical practice. Epileptic Disorders (ED) (Vol. 20, Issue-1, pp. 13-29) DOI: https://doi.org/10.1684/epd. 2017.0950

Yang, Y. Rasmussen, B. A. Shlaes, D. M. (1999). Class A beta-lactamases--enzyme-inhibitor interactions and resistance. Pharmacology & Therapeutics (PT) (Vol. 83, Issue-2, pp. 141-151) DOI: https://doi.org/10.1016/S0163-7258(99)00027-3

Gomez, I. Alonso, E. Ramon, D. J. Yus, M. (2000). Naphthalene-catalysed Lithiation of Chlorinated Nitrogenated Aromatic Heterocycles and Reaction with Electrophiles. Tetrahedron (Vol. 56, Issue- 24, pp. 4043-4052). DOI: https://doi.org/10.1016/S0040-4020(00)00318-5

Altaf, A. A. Shahzad, A. Gul, Z. Rasool, N. Badshah, A. Lal, B. Khan, E. J. (2015). Synthesis, Crystal Structure, and DFT Calculations of 1,3-Diisobutyl Thiourea. Drug Design and Medicinal Chemistry (DDMC) (Vol. 1, 1, pp. 1-11) DOI: https://doi.org/10.1155/2015/913435

Man, X. Yongzhi, P. Li, Z. Shulin, W. Jiayou, J. Rakesh, K. P. (2019). Triazole derivatives as inhibitors of Alzheimer's disease: Current developments and structure-activity relationships. European Journal of Medicinal Chemistry (EJMC) (Vol. 180, Issue 15 pp. 656-672)

DOI: https://doi.org/10.1016/j.ejmech.2019.07.059.

Litvinov, P. V. Dotsenko, V. V. Krivokolysko, S. G. Thienopyridines: synthesis, properties, and biological activity (2005). Russian Chemical Bulletin, International Edition (RCBIE) (Vol. 54, Issue- 4, pp. 864-904. DOI: https://doi.org/ 10665285/05/54040864/2005.

Schnute, M. E. Anderson, D. J. Brideau, R. J. (2007). 2-Aryl-2-hydroxyethylamine substituted 4-oxo-4,7-dihydrothieno- [2,3-b]pyridines as broad-spectrum inhibitors of human herpesvirus polymerases. Bioorganic & Medicinal Chemistry Letters (BMCL) (Vol. 17, Issue 12, pp. 3349-3353). DOI: https://doi.org/10.1016/j.bmcl.2007.03.102

Bahekar, R. H. Jain, M. R. Jadav, P.A. Prajapati, V.M. Patel, D.N. Gupta, A.A. Sharma, A. Tom, Andyopadhya, D. Modi, H. Patel, P. R. (2007). Design, synthesis, and biological evaluation of substituted-N-(thieno[2,3-b]pyridin-3-yl)-guanidines, N-(1H-pyrrolo[2,3-b]pyridin-3-yl)-guanidines, and N-(1H-indol-3-yl)-guanidines. Bioorganic & Medicinal Chemistry (BMC) (Vol. 15, Issue 9, pp. 3248-3265).

DOI: https://doi.org/10.1016/j.bmc.2007.02.029

Abdel-Rahman, A. E. Bakhite, E. A. Al-Taifi, E. A. (2003). Synthesis and antimicrobial testing of some new S-substituted-thiopyridines, thienopyridines, pyridothienopyrimidines and pyridothienotriazines Pharmazie (Vol. 58, Issue 6, pp. 372-379).

DOI: https://doi.org/10.1002/chin.200339135

Hayakawa, I. Shioya, R. Agatsuma, T. Furukawa, H. Sugano, Y. (2004). Thienopyridine and benzofuran derivatives as potent anti-tumour agents possessing different structure–activity relationships. Bioorganic & Medicinal Chemistry Letters (BMCL) (Vol. 14, Issue 13, pp. 3411-3415). DOI: https://doi.org/10.1016/j.bmcl.2004.04.079

Ichiro, H, Rieko, S., Toshinori, A., Hidehiko, F., Yuichi, S. (2004) Thienopyridine and benzofuran derivatives as potent anti-tumour agents possessing different structure-activity relationships, Bioorganic Medicinal Chemistry Letters (BMCL) (Vol. 14, Issue-13, pp. 3411-3414) DOI: https://doi.org/10.1016/j.bmcl.2004.04.079.

Krauze, A. Germame, S. Eberlins, O. Sturms, I. Klusa, V. Duburs, G. (1999). Derivatives of 3-cyano-6-phenyl-4-(3`-pyridyl)-pyridine-2(1H)-thione and their Neurotropic activity. European Journal of Medicinal Chemistry (EJMC) (Vol. 34, Issue-4, pp. 301-310).

DOI: https://doi.org/10.1016/S0223-5234(99)80081-6.

Barry, A. I. (1976). The antimicrobial Susceptibility Test, Principles and Practices. 4th Ed. (ELBS), 1976, 80. https://books.google.co.in/books/about/The_Antimicrobic_Susceptibility_Test.html?id=LPNqAAAAMAAJ&redir_esc=y

Most read articles by the same author(s)

1 2 > >>