Exploring the Role of Vanillic Acid in Liquid Crystal Applications: A Review
Main Article Content
Abstract
Vanillic acid, a naturally occurring phenolic acid found in various plant sources such as vanilla beans and certain fruits, has recently gained interest as a precursor for synthesizing liquid crystals. With its phenolic hydroxyl group and methoxy substitution on the aromatic ring, vanillic acid offers multiple functionalization opportunities that can lead to the formation of liquid crystalline structures. The ease of chemical modification and the environmentally friendly nature of vanillic acid make it a promising compound for creating novel LC materials. This review provides an overview of the advancements in vanillic acid-based liquid crystals. It explores the chemical strategies used to transform vanillic acid into mesogenic compounds, the resulting liquid crystalline phases, and their properties. Furthermore, we examine the thermal, optical, and mechanical behaviors of these materials and highlight their potential applications. Given the growing need for sustainable materials, vanillic acid-based liquid crystals offer an exciting new direction for academic research and practical applications.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
Y. Zhu, T. Li, X. Fu, A.M. Abbasi, B. Zheng, R.H. Liu, (2015) Phenolics content, antioxidant and antiproliferative activities of dehulled highland barley (Hordeum vulgare L.), Journal of Functional Foods, 19, 439-450. DOI: https://doi.org/10.1016/j.jff.2015.09.053
H. Falleh, R. Ksouri, K. Chaieb, N. Karray-Bouraoui, N. Trabelsi, M. Boulaaba, C. Abdelly, (2008) Phenolic composition of Cynara cardunculus L. organs, and their biological activities. Comptes Rendus Biologies, 331, 372-379. DOI: https://doi.org/10.1016/j.crvi.2008.02.008
P.S.M. Prince, K. Dhanasekar, S. Rajakumar. (2015) Vanillic acid prevents altered ion pumps, ions, inhibits FAS-receptor and caspase mediated apoptosis-signaling pathway and cardiomyocyte death in myocardial infarcted rats. Chemico-Biological Interactions, 232, 68-76. DOI: https://doi.org/10.1016/j.cbi.2015.03.009
U.G. Dziki, M. Świeca, M. Sułkowski, D. Dziki, B. Baraniak, J. Czyż. (2013) Antioxidant and anticancer activities of Chenopodium quinoa leaves extracts–in vitro study. Food and Chemical Toxicology, 57, 154-160. DOI: https://doi.org/10.1016/j.fct.2013.03.023
L. Mojica, A. Meyer, M.A. Berhow, E. González de Mejía. (2015) Bean cultivars (Phaseolus vulgaris L.) have similar high antioxidant capacity, in vitro inhibition of α-amylase and α-glucosidase while diverse phenolic composition and concentration. Food Research International, 69, 38-48. DOI: https://doi.org/10.1016/j.foodres.2014.12.007
L.K.A.M. Leal, T.M. Pierdoná, J.G.S. Góes, K.S. Fonsêca, K.M. Canutoc, E.R. Silveira, A.M.E. Bezerra, G.S.B. Viana. (2011)A comparative chemical and pharmacological study of standardized extracts and vanillic acid from wild and cultivated Amburana cearensis AC Smith. Phytomedicine. 18, 230-233. DOI: https://doi.org/10.1016/j.phymed.2010.05.012
B.L. Dhananjaya, A. Nataraju, R. Rajesh, C.D. Raghavendra Gowda, B.K. Sharath, B.S. Vishwanath, Cletus J.M. D’Souza. (2006) Anticoagulant effect of Naja naja venom 5′ nucleotidase: demonstration through the use of novel specific inhibitor, vanillic acid. Toxicon. 48, 411-421. DOI: https://doi.org/10.1016/j.toxicon.2006.06.017
P. Malairajan, G. Gopalakrishnan, S. Narasimhan, K.J.K. Veni, S. Kavimani. (2007) Anti-ulcer activity of crude alcoholic extract of Toona ciliata Roemer (heart wood). Journal of Ethnopharmacology, 110, 348-351. DOI: https://doi.org/10.1016/j.jep.2006.10.018
J.A. Duke. (1992). Database of phytochemical constituents of GRAS herbs and other economic plants. CRC Press. https://www.routledge.com/Handbook-of-Phytochemical-Constituents-of-GRAS-Herbs-and-Other-Economic-Plants-Herbal-Reference-Library/Duke/p/book/9780849338656?srsltid=AfmBOorz6458XBNNQsqvDU_dbT8LzRMMaLslWmv61DlNmMzdO48-VgEj
L.A Pacheco-Palencia, S. Mertens-Talcott, S.T. Talcott. (2008) Chemical composition, antioxidant properties, and thermal stability of a phytochemical enriched oil from Acai (Euterpe oleracea Mart.). Journal of Agricultural and Food Chemistry, 56, 4631-4636. DOI: https://doi.org/10.1021/jf800161u
I.A. Pearl, (1946) Reactions of vanillin and its derived compounds. I. The reaction of vanillin with silver oxide1. Journal of the American Chemical Society, 68, 429-432. DOI: https://doi.org/10.1021/ja01207a025
M. Fache, E. Darroman, V. Besse, R. Auvergne, S. Caillol, B. Boutevin. (2014) Vanillin, a promising biobased building-block for monomer synthesis. Green Chemistry, 16, 1987–1998. DOI: https://doi.org/10.1039/C3GC42613K
M. Fache, B. Boutevin, S. Caillol. (2015) Vanillin, a key-intermediate of biobased polymers. European Polymer Journal, 68, 488–502. DOI: https://doi.org/10.1016/j.eurpolymj.2015.03.050
H.R. Kricheldorf, G. Schwarz. (1984) New polymer syntheses: 10. Syntheses of high molecular weight poly(4-hydroxybenzoate)s by bulk condensations of 4-hydroxybenzoic acids. Polymer, 25, 520–528. DOI: https://doi.org/10.1016/0032-3861(84)90214-3
H.R. Kricheldorf, G. Löhden. Whisker 11. (1995) Poly(ester-Amide)s derived from vanillic acid and 4-aminobenzoic acid. Polymer, 36(8), 1697–1705. DOI: https://doi.org/10.1016/0032-3861(95)99016-N
H.R. Kricheldorf, T. Stukenbrock. (1997) New polymer syntheses, 92. Biodegradable, thermotropic copolyesters derived from β-(4 hydroxyphenyl)propionic acid. Macromolecular Chemistry and Physics, 198, 3753–3767. DOI: https://doi.org/10.1002/macp.1997.021981134
X.G. Li, M.R. Huang, G.H. Guan, T. Sun, (1997) Synthesis and characterization of liquid crystalline polymers from p-hydroxybenzoic acid, poly(ethylene terephthalate), and third monomers. Journal of Applied Polymer Science, 66(11), 2129-2138. DOI: https://doi.org/10.1002/(SICI)1097-4628(19971219)66:11<2129::AID-APP9>3.0.CO;2-J
X.G. Li, M.R. Huang, G.H. Guan, T. Sun, (1995) Molecular structure of liquid-crystalline copolyesters of vanillic acid, 4-hydroxybenzoic acid and poly( ethylene terephthalate) Die Angewandte Makromolekulare Chemie, 221, 69-85. DOI: https://doi.org/10.1002/apmc.1995.052270108
X.G. Li, M.R. Huang, (1997) Textures of thermotropic liquid-crystalline copolymers containing either 2,7-, 1,5- or 1,4-naphthalenediol or vanillic acid units. Die Angewandte Makromolekulare Chemie 249, 163-181. DOI: https://doi.org/10.1002/apmc.1997.052490111
X.G. Li, M.R. Huang, (1999) Thermal Degradation Kinetics Of Thermotropic Copoly (P-Oxybenzoate-Ethylene Terephthalate-Vanillate) By A High-Resolution Thermogravimetry. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry A, 36(5-6), 859-878. DOI: https://doi.org/10.1081/MA-100101568
Antonio Reinaa, Andreas Gerken, Uwe Zemann, Hans R. Kricheldorf. (1999) Liquid-crystalline hyperbranched and potentially biodegradable polyesters based on phloretic acid and gallic acid. Macromolecular Chemistry and Physics, 200, 1784–1791. DOI: https://doi.org/10.1002/(SICI)1521-3935(19990701)200:7<1784::AID-MACP1784>3.0.CO;2-B
X.G. Li, M.R. Huang, (2000) Molecular Chain Structure Of Thermotropicp-Oxybenzoate/Ethyleneterephthalate/ Vanillate Or Phenyleneterephthalate Terpolymers. Polymer-Plastics Technology and Engineering, 39(2), 317–331. DOI: https://doi.org/10.1081/PPT-100100032
C.H.R.M. Wilsens, J.M.G.A. Verhoeven, B.A.J. Noordover, M.R. Hansen, D. Auhl, S. Rastogi. (2014) Thermotropic Polyesters from 2,5-Furandicarboxylic Acid and Vanillic Acid: Synthesis, Thermal Properties, Melt Behavior, and Mechanical Performance. Macromolecules, 47 3306−3316. DOI: https://doi.org/10.1021/ma500433e
C.H.R.M. Wilsens, B.A.J. Noordover, S. Rastogi. (2014) Aromatic thermotropic polyesters based on 2,5-furandicarboxylic acid and vanillic acid. Polymer, 55, 2432-2439. DOI: http://dx.doi.org/10.1016/j.polymer.2014.03.033
C.H.R.M. Wilsens, Y.S. Deshmukh, W. Liu, B.A.J. Noordover, Y. Yao, H.E.H.Meijer, S. Rastogi, (2015) Processing and performance of aromatic-aliphatic thermotropic polyesters based on vanillic acid. Polymer, 60, 198-206. DOI: https://doi.org/10.1016/j.polymer.2015.01.045
C.H.R.M. Wilsens, M.P.F. Pepels, A.B. Spoelstra, G. Portale, D. Auhl, Y.S. Deshmukh, J.A.W. (2016) Harings, Improving Stiffness, Strength, and Toughness of Poly(ωpentadecalactone) Fibers through in Situ Reinforcement with a Vanillic Acid-Based Thermotropic Liquid Crystalline Polyester. Macromolecules, 49(6), 2228–2237. DOI: https://doi.org/10.1021/acs.macromol.5b02419
G.W. de Kort , N. Leoné, E. Stellamanns, D. Auhl, C.H.R.M. Wilsens, S. Rastogi. (2018) Effect of Shear Rate on the Orientation and Relaxation of a Vanillic Acid Based Liquid Crystalline Polymer. Polymers, 10(9), 935. DOI: https://doi.org/10.3390/polym10090935
G.W. de Kort (2021). Thermotropic polyesters and polylactide: a route to sustainable and reprocessable reinforced composites. [Doctoral Thesis]. Maastricht University. DOI: https://doi.org/10.26481/dis.20210125gk
S.M. Vilas-Boas,V. Vieiraa, P. Brandão, R.S. Alves, J.A.P. Coutinho, S.P. Pinho, O. Ferreira, (2019) Solvent and temperature effects on the solubility of syringic, vanillic or veratric acids: Experimental, modeling and solid phase studies. Journal of Molecular Liquids, 289, 111089. DOI: https://doi.org/10.1016/j.molliq.2019.111089
B. Venkidasamy, U. Subramanian, H.S. Almoallim, S. Ali Alharbi, R.R.C. Lakshmikumar, M. Thiruvengadam, (2024) Vanillic Acid Nanocomposite: Synthesis, Characterization Analysis, Antimicrobial, and Anticancer Potentials, Molecules, 29(13), 3098. DOI: https://doi.org/10.3390/molecules29133098
S. Chauhan, V.R. Patel, (2024) A synthesis and mesophase behaviour of homologous series: 4-(4’-n-alkoxyvanilloyloxy) phenyl-azo -4”-ethylbenzoate with terminal ester group as a ethyl carboxylate. World Scientific News, 191, 30-42. https://worldscientificnews.com/a-synthesis-and-mesophase-behaviour-of-homologous-series-4-4-n-alkoxyvanilloyloxy-phenyl-azo-4-ethylbenzoate-with-terminal-ester-group-as-a-ethyl-carboxylate/
Aworinde, A. K., Adeosun, S. O., & Oyawale, F. A. (2020). Mechanical Properties of Poly (L-Lactide)-Based Composites for Hard Tissue Repairs. In International Journal of Innovative Technology and Exploring Engineering (Vol. 9, Issue 5, pp. 2152–2155). DOI: https://doi.org/10.35940/ijitee.c8501.039520
Meenakshi, C., Bharathi, J., & Karthikeyan, S. (2019). Experiment work on the Effect of Hygrothermal Environment on the Mechanical Behaviour of Natural Fiber Reinforced Epoxy Composites. In International Journal of Engineering and Advanced Technology (Vol. 8, Issue 6s2, pp. 587–589). DOI: https://doi.org/10.35940/ijeat.f1174.0886s219
Venkategowda, T., & L H, Dr. M. (2019). Effect of Fiber Loading on Mechanical and Physical Properties of Uniaxial Long Kenaf Bast Fiber Reinforced Epoxy Composites. In International Journal of Recent Technology and Engineering (IJRTE) (Vol. 8, Issue 4, pp. 12224–12229). DOI: https://doi.org/10.35940/ijrte.d8850.118419