Tongue Image Diagnosis System using Machine Learning with Hand-Crafted Features

Main Article Content

Dushyant Mankar
Dr. P.S. Chaudhary

Abstract

Traditional Chinese Medicine theorizes a clear relationship between the visual characteristics of the tongue and the operational condition of the body's organs. The visual characteristics of the tongue can offer important indications for diagnosing diseases. Investigating tongue image processing methods for automated disease identification is a flourishing field of study in the modernization of Traditional Chinese Medicine. Although autonomous extraction of high-dimensional features is inherently more beneficial in deep learning than in conventional methods, its usefulness in medical image analysis, notably in tongue images, is restricted by the need for extensive training data. This limitation arises from the need for more labeled images. This paper demonstrated the automated diagnosis of tongue photos by analyzing digital images utilizing Image Processing techniques and using Machine Learning using major image-based features. The performance simulation and analysis of the suggested system are conducted using MATLAB Software.

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
Dushyant Mankar and Dr. P.S. Chaudhary , Trans., “Tongue Image Diagnosis System using Machine Learning with Hand-Crafted Features”, IJPMH, vol. 4, no. 6, pp. 1–6, Jan. 2025, doi: 10.54105/ijpmh.L1097.04060924.
Section
Articles

How to Cite

[1]
Dushyant Mankar and Dr. P.S. Chaudhary , Trans., “Tongue Image Diagnosis System using Machine Learning with Hand-Crafted Features”, IJPMH, vol. 4, no. 6, pp. 1–6, Jan. 2025, doi: 10.54105/ijpmh.L1097.04060924.
Share |

References

Tiryaki, B., Torenek-Agirman, K., Miloglu, O. et al. Artificial intelligence in tongue diagnosis: classification of tongue lesions and normal tongue images using deep convolutional neural network. BMC Med Imaging 24, 59 (2024). Doi: https://doi.org/10.1186/s12880-024-01234-3

Jiatuo, X., Tao, J., & Shi, L. (2024). Research status and prospect of tongue image diagnosis analysis based on machine learning. Digital Chinese Medicine, 7(1), 3-12. Doi: https://doi.org/10.1016/j.dcmed.2024.04.002

Chang, H., Chen, C., Wu, K., Hsu, C., Lo, C., Chu, T., & Chang, H. (2024). Tongue feature dataset construction and real-time detection. PLOS ONE, 19(3), e0296070. Doi: https://doi.org/10.1371/journal.pone.0296070

Bhatnagar, V., & Bansod, P. P. (2023). Convolution Neural Network Based Multi-Label Disease Detection Using Smartphone Captured Tongue Images. Applied Sciences, 14(10), 4208. Doi: https://doi.org/10.3390/app14104208

Segawa, M., Iizuka, N., Ogihara, H., Tanaka, K., Nakae, H., Usuku, K., Yamaguchi, K., Wada, K., Uchizono, A., Nakamura, Y., Nishida, Y., Ueda, T., Shiota, A., Hasunuma, N., Nakahara, K., Hebiguchi, M., & Hamamoto, Y. (2023). Objective evaluation of tongue diagnosis ability using a tongue diagnosis e-learning/e-assessment system based on a standardized tongue image database. Frontiers in Medical Technology, 5, 1050909. Doi: https://doi.org/10.3389/fmedt.2023.1050909

Liu, Q., Li, Y., Yang, P., Liu, Q., Wang, C., Chen, K., & Wu, Z. (2023). A survey of artificial intelligence in tongue image for disease diagnosis and syndrome differentiation. Digital Health, 9. Doi: https://doi.org/10.1177/20552076231191044

Iqbal, S., N. Qureshi, A., Li, J. et al. On the Analyses of Medical Images Using Traditional Machine Learning Techniques and Convolutional Neural Networks. Arch Computat Methods Eng 30, 3173–3233 (2023). Doi: https://doi.org/10.1007/s11831-023-09899-9

Tang, Wenjun & Gao, Yuan & Liu, Lei & Xia, Tingwei & He, Li & Zhang, Song & Guo, Jinhong & Li, Weihong & Xu, Qiang. (2020). An Automatic Recognition of Tooth-Marked Tongue Based on Tongue Region Detection and Tongue Landmark Detection via Deep Learning. IEEE Access. PP. 1-1. Doi: https://doi.org/10.1109/ACCESS.2020.3017725

Zhang, Hong-Kai & Yang Yang Hu, Yang Yang Hu & Xue-Li, & Wang, Li-Juan & Zhang, Wen-Qiang & Li, Fu-Feng. (2018). Computer Identification and Quantification of Fissured Tongue Diagnosis. 1953-1958. Doi: https://doi.org/10.1109/BIBM.2018.8621114

Wan, Chao & Zhang, Yue & Xia, Chunming & Qian, Peng & Wang, Yiqin. (2019). Fissured Tongue Image Recognition Based on Support Vector Machine. 1-5. Doi: https://doi.org/10.1109/CISP-BMEI48845.2019.8965785

Li, Bo & Xu, Kele & Feng, Dawei & Mi, Haibo & Wang, Huaimin & Zhu, Jian. (2019). Denoising Convolutional Autoencoder Based B-Mode Ultrasound Tongue Image Feature Extraction. Doi: https://doi.org/10.1109/ICASSP.2019.8682806

Trajanovski, Stojan & Shan, Caifeng & Weijtmans, Pim & Koning, Susan & Ruers, Theo. (2021). Tongue Tumor Detection in Hyperspectral Images Using Deep Learning Semantic Segmentation. IEEE Transactions on Biomedical Engineering. 68. 1330-1340. Doi: https://doi.org/10.1109/TBME.2020.3026683

Meng, Dan & Cao, Guitao & Duan, Ye & Zhu, Minghua & Tu, Liping & Xu, Dong & Xu, Jiatuo. (2017). Tongue Images Classification Based on Constrained High Dispersal Network. Evidence-Based Complementary and Alternative Medicine. 2017. 1-12. Doi: https://doi.org/10.1155/2017/7452427

Lu, Yunxi & Li, Xiaoguang & Zhuo, Li & Zhang, Jing & Zhang, Hui. (2018). Dccn: A Deep-Color Correction Network For Traditional Chinese Medicine Tongue Images. 1-6. Doi: https://doi.org/10.1109/ICMEW.2018.8551514

Zhou, Jianhang & Zhang, Qi & Zhang, Bob & Chen, Xiaojiao. (2019). TongueNet: A Precise and Fast Tongue Segmentation System Using U-Net with a Morphological Processing Layer. Applied Sciences. 9. 3128. Doi: https://doi.org/10.3390/app9153128

Chang, Wen-Hsien & Wu, Han-Kuei & Lo, Lun-chien & Hsiao, William & Chu, Hsueh-Ting & Chang, Hen-Hong. (2019). Tongue fissure visualization by using deep learning – an example of the application of artificial intelligence in traditional medicine. Doi: https://doi.org/10.21203/rs.2.19210/v3

Dai, Yinglong & Wang, Guojun. (2018). Analyzing Tongue Images Using a Conceptual Alignment Deep Autoencoder. IEEE Access. PP. 1-1. Doi: https://doi.org/10.1109/ACCESS.2017.2788849

Fauzan, Muhammad & Harmoko, Adhi & Kiswanjaya, Bramma. (2018). Smoker’s Tongue Recognition System based on Spectral and Texture Features using Visible Near-Infrared Imaging. 101-105. Doi: https://doi.org/10.1109/ICELTICS.2018.8548905

Feng, Ming & Wang, Yin & Xu, Kele & Wang, Huaimin & Ding, Bo. (2021). Improving Ultrasound Tongue Contour Extraction Using U-Net and Shape Consistency-Based Regularizer. 6443-6447. Doi: https://doi.org/10.1109/ICASSP39728.2021.9414420

Ning, Jifeng & Zhang, David & Wu, Chengke & Yue, Songfeng. (2010). Automatic tongue image segmentation based on gradient vector flow and region merging. Neural Computing and Applications - NCA. 21. 1-8. Doi: https://doi.org/10.1007/s00521-010-0484-3

Yogi Zulfadli, Arry Verdian, Muhammad Mamur, “Disease Diagnosis Using Tongue Image Analysis”, 3rd International Conferences on Information Technology and Business (ICITB) , 7th Dec 2017, pp. 133-136. http://repository.upbatam.ac.id/1828/1/Prosiding%20ICITB.pdf

Zhou, Zibo & Peng, Dongliang & Gao, Fumeng & Lu, Leng. (2019). Medical Diagnosis Algorithm Based on Tongue Image on Mobile Device. Journal of Multimedia Information System. 6. 99-106. Doi: https://doi.org/10.33851/JMIS.2019.6.2.99

Li, Xiaoqiang & Zhang, Yin & Cui, Qing & Yi, Xiaoming & Zhang, Yi. (2018). Tooth-Marked Tongue Recognition Using Multiple Instance Learning and CNN Features. IEEE Transactions on Cybernetics. PP. 1-8. Doi: https://doi.org/10.1109/TCYB.2017.2772289

Li, Xinlei & Yang, Dawei & Wang, Yan & Yang, Shuai & Qi, Lizhe & Li, Fufeng & Gan, Zhongxue & Zhang, Wenqiang. (2019). Automatic Tongue Image Segmentation For Real-Time Remote Diagnosis. 409-414. Doi: https://doi.org/10.1109/BIBM47256.2019.8982947

Mansour, Romany & Althobaiti, Maha & Ashour, Amal. (2021). Internet of Things and Synergic Deep Learning Based Biomedical Tongue Color Image Analysis for Disease Diagnosis and Classification. IEEE Access. PP. 1-1. Doi: https://doi.org/10.1109/ACCESS.2021.3094226

Mozaffari, Mohammad Hamed & Lee, Won-Sook. (2020). Deep Learning for Automatic Tracking of Tongue Surface in Real-time Ultrasound Videos, Landmarks instead of Contours. Doi: https://doi.org/10.1109/BIBM49941.2020.9313262

Porras, Dagoberto & Sepulveda, Alexander & Csapó, Tamás. (2019). DNN-based Acoustic-to-Articulatory Inversion using Ultrasound Tongue Imaging. 1-8. Doi: https://doi.org/10.1109/IJCNN.2019.8851769

T. Qiu, "Tongue Identification for Small Samples Based on Meta Learning," 2020 International Conference on Computer Information and Big Data Applications (CIBDA), 2020, pp. 295-299, Doi: https://doi.org/10.1109/CIBDA50819.2020.00073

Jiang, Tao & Hu, Xiao-juan & Yao, Xing-hua & Tu, Li-ping & Huang, Jing-bin & Ma, Xu-xiang & Cui, Ji & Wu, Qing-feng & Xu, Jiatuo. (2020). Tongue Image Quality Assessment Based on Deep Convolutional Neural Network. Doi: https://doi.org/10.21203/rs.3.rs-91687/v1

Cattaneo, Camilla & Liu, Jing & Wang, Chenhao & Pagliarini, Ella & Sporring, Jon & Bredie, Wender. (2020). Comparison of manual and machine learning image processing approaches to determine fungiform papillae on the tongue. Scientific Reports. 10. Doi: https://doi.org/10.1038/s41598-020-75678-2

Song, Chao & Wang, Bin & Xu, Jiatuo. (2020). Classifying Tongue Images using Deep Transfer Learning. 103-107. Doi: https://doi.org/10.1109/ICCIA49625.2020.00027

E. Srividhya and A. Muthukumaravel, "Diagnosis of Diabetes by Tongue Analysis," 2019 1st International Conference on Advances in Information Technology (ICAIT), 2019, pp. 217-222, Doi: https://doi.org/10.1109/ICAIT47043.2019.8987391

Vijayalakshmi, A & Shahaana, M & Nivetha, N & Subramaniam, Kamalraj. (2020). Development of Prognosis Tool for Type-II Diabetics using Tongue Image Analysis. 617-619. Doi: https://doi.org/10.1109/ICACCS48705.2020.9074437

Dodia, R. V., & Sahoo, Dr. S. (2021). A Review on General Overview About Diabetes Mellitus. In International Journal of Advanced Pharmaceutical Sciences and Research (Vol. 1, Issue 3, pp. 1–3). Doi: https://doi.org/10.54105/ijapsr.B4005.121321

Priya, M., & Karthikeyan, M. (2019). Data Mining Technique for Diabetes Diagnosis using Classification Algorithms. In International Journal of Recent Technology and Engineering (IJRTE) (Vol. 8, Issue 4, pp. 9044–9049). Doi: https://doi.org/10.35940/ijrte.D4429.118419

Singla, S., Kesheri, M., Kanchan, S., & S, A. (2019). Current Status and Data Analysis of Diabetes in India. In International Journal of Innovative Technology and Exploring Engineering (Vol. 8, Issue 9, pp. 1920–1934). Doi: https://doi.org/10.35940/ijitee.I8403.078919

Most read articles by the same author(s)

1 2 3 4 5 > >>