In Situ Composites Prepared by Friction Stir Processing of Aluminium Alloy: A Review
Main Article Content
Abstract
This review examines the properties of aluminium matrix composites produced by friction stir processing and the types of reinforcements that have been explored recently. The demand for light yet strong parts appears to be growing, as regular aluminium alloys cannot provide sufficient strength, wear, or corrosion protection. Friction stir processing may offer a solid-state method for achieving finer grains and distributing particles more evenly, without the drawbacks of casting. Authors list a variety of filler types – ceramics like SiC or Al₂O₃, metals such as copper or scandium, carbon-based materials like graphene sheets, and even waste products like rice husk ash or eggshells. Those additions are reported to boost stiffness, hardness and resistance to corrosion. Yet, the exact influence often depends on the tool shape, spin speed, travel speed, and the number of passes made. Those process settings appear to control where particles end up, how well they adhere, and the overall performance. The paper highlights why these FSP composites may be significant for applications such as planes, cars, boats, and heat sinks, particularly when eco-friendly fillers are utilised. Still, some problems remain unsolved: particles can clump, bonds may break, and even tiny changes in parameters can disrupt the entire batch. Critics could argue that the current data are still scattered, making it hard to judge reproducibility. Looking ahead, the authors suggest mixing different reinforcements, utilising live monitoring of the stir zone, and incorporating more waste-derived materials. Those ideas could improve both the function and green grade of the composites, if they survive real-world testing. Nevertheless, the field lacks standardised tests, which can lead to conflicting results. Some labs use low tool speeds to avoid overheating; others push high rotations for finer grains. These choices entail trade-offs that readers should consider when evaluating the claimed benefits in practice.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
Abtan, N. S., Jassim, A. H., & Al-Janabi, M. S. M. (2018). Tensile Strength, Micro-hardness and Microstructure of Friction-Stir-Welding AA6061-T4 Joints. Tikrit Journal of Engineering Science, 25(4), 50–55. DOI: https://doi.org/10.25130/TJES.25.4.09
O. H. Mahmood, M. Sh. Aljanabi, and F. M. Mahdi, “Effect of Cu nanoparticles on microhardness and physical properties of aluminium matrix composite prepared by PM,” AIMS Materials Science, vol. 12, no. 2, pp. 245–257, Jan. 2025, doi: 10.3934/matersci. 2025013. Available: DOI: https://doi.org/10.3934/matersci.2025013
Sato, Y. (2015). Friction Stir Welding (FSW). Quarterly Journal of The Japan Welding Society, 84(8), 573–581. DOI: https://doi.org/10.2207/JJWS.84.573
Moustafa, E. B. (2017). Effect of Multi-Pass Friction Stir Processing on Mechanical Properties for AA2024/Al2O3 Nanocomposites. Materials, 10(9), 1053. DOI:https://doi.org/10.3390/MA10091053
H. Eskandari, R. Taheri, and F. Khodabakhshi, “Friction-stir processing of an AA8026-TiB2-Al2O3 hybrid nanocomposite: Microstructural developments and mechanical properties,” Materials Science and Engineering A-structural Materials Properties Microstructure and Processing, vol. 660, pp. 84–96, Apr. 2016, Available: https://www.sciencedirect.com/science/article/pii/S0921509316301976
Vidal, C., Ferreira, P. M., Inácio, P. L., Ferreira, F., Silva, R. J. C., & Santos, T. G. (2023). Enhancement of particle distribution in aluminium-based composites produced by upward friction stir processing. The International Journal of Advanced Manufacturing Technology, 127, 2745–2757. DOI: https://doi.org/10.1007/s00170-023-11664-y
Sanusi, K. O., & Akinlabi, E. T. (2017). Friction-stir processing of a composite aluminium alloy (AA 1050) reinforced with titanium carbide powder. Materiali in Tehnologije, 51(3), 427–435. DOI: https://doi.org/10.17222/MIT.2016.021
Zhang, R. Y., Wang, P., Han, X. W., Shi, Z. M., & Zhao, G. (2016). Effect of the Deformation Parameters on the Microstructure of TiC-Al2O3P/Al Composites. Materials Science Forum, 877, 237–244. DOI: https://doi.org/10.4028/WWW.SCIENTIFIC.NET/MSF.877.237
Pasha, Md. A. (2022). Fabrication of Surface Metal Matrix composite of AA7075 using Friction Stir Processing. International Journal of Scientific Research in Science and Technology, 551–555. DOI: https://doi.org/10.32628/ijsrst2293108
Zykova, A., Vorontsov, A. V., Chumaevskii, A., Gurianov, D. A., Savchenko, N. L., Gusarova, A., Kolubaev, E., & Tarasov, S. Yu. (2022). In Situ Intermetallics-Reinforced Composite Prepared Using Multi-Pass Friction Stir Processing of Copper Powder on a Ti6Al4V Alloy. Materials, 15(7), 2428. DOI: https://doi.org/10.3390/ma15072428
Tashkandi, M. A., Al-jarrah, J. A., & Ibrahim, M. (2017). Increasing the Mechanical Properties of Friction Stir Welded Joints of 6061 Aluminium Alloy by Introducing Alumina Particles. Advances in Materials Sciences, 17(2), 29–40. DOI: https://doi.org/10.1515/ADMS-2017-0009
Inácio, P. L., Nogueira, F., Ferreira, F. B., Vidal, C., Schell, N., Tero, T., Vilaça, P., Oliveira, J. P., & Santos, T. G. (2021). Functionalized material production via multi-stack Upward Friction Stir Processing (UFSP). Materials and Manufacturing Processes, 1–14.
DOI: https://doi.org/10.1080/10426914.2021.1942909
Refat, M., et.al. (2016). Microstructure, Hardness and Impact Toughness of Heat-Treated Nanodispersed Surface and Friction Stir-Processed Aluminium Alloy AA7075. Journal of Materials Engineering and Performance, 25(11), 5087–5101.
DOI: https://doi.org/10.1007/S11665-016-2346-3
Olaniran, O., Uwaifo, O., Bamidele, E., & Olaniran, B. A. (2019). An investigation of the mechanical properties of an organic silica, bamboo leaf ash, and rice husk-reinforced aluminium hybrid composite. 3(4). DOI: https://doi.org/10.15406/MSEIJ.2019.03.00103
García-Vázquez, F., Vargas-Arista, B., Muñiz, R., Ortiz, J., Hernández García, H., & Acevedo, J. (2016). The Role of Friction Stir Processing (FSP) Parameters on TiC-Reinforced Surface of Al7075-T651 Aluminium Alloy. Soldagem & Inspeção, 21(4), 508–516. DOI: https://doi.org/10.1590/0104-9224/SI2104.10
Kumar, R. A., et al. (2019). Effect of Hybrid Reinforcement on the Stirred Zone of Dissimilar Aluminium Alloys during Friction Stir Welding. Metallurgical Research & Technology, 116(6), 631. DOI: https://doi.org/10.1051/METAL/2019062
Li, P., & Chen, T. J. (2016). Effect of SiCp volume fraction on the microstructure and tensile properties of SiCp/2024 Al-based composites prepared by powder thixoforming. Journal of Materials Research, 31(18), 2850–2862. DOI: https://doi.org/10.1557/JMR.2016.293
Yu, Z., Zhu, H., Huang, J., Li, J., Xie, Z., & Xie, Z. (2017). Processing and characterisation of in-situ ultrafine TiB2-Cu composites from the Ti-B-Cu system. Powder Technology, 320, 66–72. DOI: https://doi.org/10.1016/J.POWTEC.2017.07.036
Ammal, M. A., & Sudha, J. (2022). Microstructural Evolution & Mechanical Properties of ZrO2/GNP and B4C/GNP reinforced AA6061 Friction Stir Processed Surface Composites - A Comparative study. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 237, 1149–1160. DOI: https://doi.org/10.1177/09544054221126942
Ahmadifard, S., Momeni, A., Bahmanzadeh, S., & Kazemi, S. (2018). Microstructure, tribological and mechanical properties of Al7075 / Ti3AlC2 MAX-phase surface composite produced by friction stir processing. Vacuum, 155, 134–141.
DOI: https://doi.org/10.1016/J.VACUUM.2018.06.002
Yelamasetti, B., G V. R., Saxena, K. K., Msomi, V., M V. H., & Behera, A. (2022). Surface modification of aluminium alloy 6061 by embedding B4C particles via friction stir processing. Materials Research Express, 9(5), 056511. DOI: https://doi.org/10.1088/2053-1591/ac6da7
Agureev, L. E., Kostikov, V. I., Yeremeyeva, Zh. V., Barmin, A. A., Rizakhanov, R. N., Ivanov, B. S., Ashmarin, A. A., Laptev, I. N., & Rudshteyn, R. I. (2016). Powder aluminium composites of the Cu system with micro-additions of oxide nanoparticles. Inorganic Materials: Applied Research, 7(5), 687–690. DOI: https://doi.org/10.1134/S2075113316050026
Kalashnikova, T., et.al (2022). Structure, Mechanical Properties and Friction Characteristics of the Al-Mg-Sc Alloy Modified by Friction Stir Processing with the Mo Powder Addition. Superalloys, 12(6), 1015. DOI: https://doi.org/10.3390/met12061015
Mourad, A.-H. I., Mousa, E. S., & Kandil, A. (2020). Fabrication of AA6082/WC nanocomposite by friction stir processing and optimisation using the Taguchi approach. 15(57), 1030–1039. DOI: https://doi.org/10.21608/AUEJ.2020.120375
Chumaevskii, A., et al. (2023). In-Situ Al-Mg Alloy Base Composite Reinforced by Oxides and Intermetallic Compounds Resulted from Decomposition of ZrW2O8 during Multipass Friction Stir Processing. Materials, 16(2), 817. DOI: https://doi.org/10.3390/ma16020817
Mandal, P. K. (2021). Surface Modification of Aluminium Alloy (7xxx Series) by Multipass Friction Stir Processing 6(2), 008–017.
DOI: https://doi.org/10.30574/GJETA.2021.6.2.0127
R. Zaekova, D. Gradinarov, P. Tashev, and Y. Hadjitodorov, Modification of 5083 aluminium alloy with graphene via friction stir processing. (2023). Vide. Tehnoloģija. Resursi, 3, 276–280. DOI: https://doi.org/10.17770/etr2023vol3.7196
Abushanab, W. S., et al. (2023). Impact of Hard and Soft Reinforcements on the Microstructure, Mechanical, and Physical Properties of the Surface Composite Matrix Manufactured by Friction Stir Processing. Coatings, 13(2), 284. DOI: https://doi.org/10.3390/coatings13020284
Akçamlı, N., Gökçe, H., & Uzunsoy, D. (2016). Processing and characterisation of graphene nano-platelet (GNP) reinforced aluminium matrix composites. Materials Testing-Materials and Components Technology and Application, 58, 952. DOI: https://doi.org/10.3139/120.110944
Boromei, I., Ceschini, L., Morri, A., & Garagnani, G. L. (2016). Friction Stir Welding of Aluminium-Based Composites Reinforced with L2O3 Particles: Effects on Microstructure and Charpy Impact Energy. Metallurgical Science and Technology, 24(1), 12–21. https://www.fracturae.com/index.php/MST/article/download/1117/1069
Khoshaim, A. B., Moustafa, E. B., Alazwari, M. A., & Taha, M. A. (2023). An Investigation of the Mechanical, Thermal and Electrical Properties of an AA7075 Alloy Reinforced with Hybrid Ceramic Nanoparticles Using Friction Stir Processing. Superalloys, 13(1), 124.
DOI: https://doi.org/10.3390/met13010124
A. Mostafapour and S. T. Khandani, “Fabrication of AL/Graphite/AL2O3 surface hybrid nano composite by friction stir processing and investigating the wear and microstructural properties of the composite,” DOAJ (DOAJ: Directory of Open Access Journals), Oct. 2017, https://doaj.org/article/33c956ececba4f2abe06ed54c89c59ba
Pasha, Md. A. (2022). Fabrication of Surface Metal Matrix composite of AA7075 using Friction Stir Processing. International Journal of Scientific Research in Science and Technology, 551–555. DOI: https://doi.org/10.32628/ijsrst2293108
N, U. K., & G, R. (2023). Analysis of tensile strength on friction stir-welded Al 6061 composite reinforced with B4C and Cr2O3 using RSM and ANN. Engineering Research Express, 5(1), 015018. DOI: https://doi.org/10.1088/2631-8695/acb6d1
Heidarpour, A., Ahmadifard, S., & Kazemi, S. (2017). On the fabrication and characterisation of Al5083/Al2O3 surface nanocomposite via friction stir processing. Journal of Advanced Materials and Processing, 5(2), 11–24. https://jmatpro.iaun.ac.ir/article_594940.htm
Saxena, P., Bongale, A., Kumar, S., & Jadhav, P. R. (2023). Microstructural and sensor data analysis of friction stir processing in fabricating Al6061 surface composites. Engineering Research Express, 5(1), 015065. DOI: https://doi.org/10.1088/2631-8695/acc158
Şenel, M. C., & Gürbüz, M. (2020). Investigation on Mechanical Properties and Microstructures of Aluminium Hybrid Composites Reinforced with Al2O3/GNPs Binary Particles. Archives of Metallurgy and Materials, 97–106.
DOI: https://doi.org/10.24425/amm.2021.134764
Fatchurrohman, N., Farhana, N., & Marini, C. D. (2018). Investigation on the effect of Friction Stir Processing Parameters on Micro-structure and Micro-hardness of Rice Husk Ash reinforced Al6061 Metal Matrix Composites. 319(1), 012032.
DOI: https://doi.org/10.1088/1757-899X/319/1/012032
Srivastava, A. K., Nag, A., Dwivedi, S. P., Dixit, A. R., & Hloch, S. (2023). Effect of eggshell powder on the microstructural and thermal behaviour of Al7075/waste eggshell surface composites produced by solid-state friction stir processing developed for potential thermal applications. The International Journal of Advanced Manufacturing Technology, 127(3–4), 1243–1261. DOI: https://doi.org/10.1007/s00170-023-11600-0
Kumar, N., Singh, R. K., Srivastava, A. K., Nag, A., Petrů, J., & Hloch, S. (2022). Surface Modification and Parametric Optimization of Tensile Strength of Al6082/SiC/Waste Material Surface Composite Produced by Friction Stir Processing. Coatings, 12(12), 1909. DOI: https://doi.org/10.3390/coatings12121909
Kumar, N. S. S., Gupta, P., & Singh, R. K. (2022). Fabrication and characterization of hybrid composite of Al6082/SiC/rice husk powder using friction stir processing. Naučno-Tehničeskij Vestnik Informacionnyh Tehnologij, Mehaniki i Optiki, 22(6), 1119–1126.