An Innovative Approach to Find Remainder

Main Article Content

Prof. Anil Kumar Sharma

Abstract

Let r be the remainder when x! is divided by p, (x, p) ∈ N, x < p. Then the value of r is given by the minimum value of k for which (−1) (m-1) (m-1)! k + 1 = 0(mod p), where m = p − x, k ∈ N.

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
Prof. Anil Kumar Sharma , Tran., “An Innovative Approach to Find Remainder”, IJAM, vol. 5, no. 2, pp. 6–7, Oct. 2025, doi: 10.54105/ijam.B1205.05021025.
Section
Articles

How to Cite

[1]
Prof. Anil Kumar Sharma , Tran., “An Innovative Approach to Find Remainder”, IJAM, vol. 5, no. 2, pp. 6–7, Oct. 2025, doi: 10.54105/ijam.B1205.05021025.

References

P.N. Seetharaman. (2024). In Search of an Elementary Proof for Fermat’s Last Theorem. Indian Journal of Advanced Mathematics, 4(1), 35–39. DOI: https://doi.org/10.54105/ijam.a1190.04010424

Bashir, S. (2023). Pedagogy of Mathematics. International Journal of Basic Sciences and Applied Computing, 10(2), 1–8. DOI: https://doi.org/10.35940/ijbsac.b1159.1010223

Most read articles by the same author(s)

1 2 3 4 5 6 > >>