Proofs of Beal’s Conjecture, Fermat’s Conjecture, Collatz Conjecture and Goldbach Conjecture

Main Article Content

Nishad T M
Dr. Mohamed M Azzedine

Abstract

In this article the elementary mathematical methods are used to prove Beal’s Conjecture, Fermat’s Conjecture, Collatz Conjecture and Goldbach Conjecture. 

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
Nishad T M and Dr. Mohamed M Azzedine , Trans., “Proofs of Beal’s Conjecture, Fermat’s Conjecture, Collatz Conjecture and Goldbach Conjecture”, IJAM, vol. 3, no. 1, pp. 1–7, Jul. 2024, doi: 10.54105/ijam.A1137.043123.
Section
Articles

How to Cite

[1]
Nishad T M and Dr. Mohamed M Azzedine , Trans., “Proofs of Beal’s Conjecture, Fermat’s Conjecture, Collatz Conjecture and Goldbach Conjecture”, IJAM, vol. 3, no. 1, pp. 1–7, Jul. 2024, doi: 10.54105/ijam.A1137.043123.

References

A. Wiles, Modular elliptic curves and Fermat’s Last Theorem. Annals Math., 141(3) (1995), 443-451. [CrossRef]

R.Daniel Mauldin (1997). "A Generalization of Fermat's Last Theorem: The Beal Conjecture and Prize Problem" (PDF). Notices of the AMS. 44 (11): 1436–1439.

Lagarias, Jeffrey C. (1985). "The 3x + 1 problem and its generalizations". The American Mathematical Monthly. 92 (1): 3–23. [CrossRef]

Fliegel, Henry F.; Robertson, Douglas S. (1989). "Goldbach's Comet: the numbers related to Goldbach's Conjecture". Journal of Recreational Mathematics. 21 (1): 1–7

Nishad T M, Mathematical Proof of Collatz Conjecture, IJMTT,178-182, Vol 67,Issue7, 2021. [CrossRef]

Most read articles by the same author(s)

1 2 3 4 > >>