Ramanujan’s Tau-Function in Terms of Bell Polynomials

Main Article Content

Dr. R. Sivaraman
H. N. Núñez-Yépez
Prof. J. López-Bonilla

Abstract

We obtain a recurrence relation for the Ramanujan’s tau-function involving the sum of divisors function, and the solution of this recurrence gives a closed formula for r(n) in terms of the complete Bell polynomials.

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
Dr. R. Sivaraman, H. N. Núñez-Yépez, and Prof. J. López-Bonilla , Trans., “Ramanujan’s Tau-Function in Terms of Bell Polynomials”, IJAM, vol. 3, no. 2, Jul. 2024, doi: 10.54105/ijam.B1157.103223.
Section
Articles

How to Cite

[1]
Dr. R. Sivaraman, H. N. Núñez-Yépez, and Prof. J. López-Bonilla , Trans., “Ramanujan’s Tau-Function in Terms of Bell Polynomials”, IJAM, vol. 3, no. 2, Jul. 2024, doi: 10.54105/ijam.B1157.103223.

References

G. E. Andrews, S. Kumar Jha, J. López-Bonilla, Sums of squares, triangular numbers, and divisor sums, J. of Integer Sequences 26 (2023) Article 23.2.5

M. A. Pathan, H. Kumar, M. Muniru Iddrisu, J. López-Bonilla, Polynomial expressions for certain arithmetic functions, J. of Mountain Res. 18, No. 1 (2023) 1-10.

R. Sivaraman, J. D. Bulnes, J. López-Bonilla, Complete Bell polynomials and recurrence relations for arithmetic functions, European J. of Theor. Appl. Sci. 1, No. 3 (2023) 51-55.

T. M. Apostol, Introduction to analytic number theory, Springer-Verlag, New York (1976).

G. H. Hardy, E. M. Wright, An introduction to the theory of numbers, Clarendon Press, Oxford (1979).

R. Sivaramakrishnan, Classical theory of arithmetic functions, Marcel Dekker, New York (1989).

R. Sivaraman, J. López-Bonilla, Apostol-Robbins theorem applied to several arithmetic functions, Bull. Math. Stat. & Res. 11, No. 2 (2023) 82-84.

R. Sivaraman, J. D. Bulnes, J. López-Bonilla, Sum of divisors function, Int. J. of Maths. and Computer Res. 11, No. 7 (2023) 3540-3542.

O. Lazarev, M. Mizuhara, B. Reid, Some results in partitions, plane partitions, and multipartitions, Summer 2010 REU Program in Maths. at Oregon State University, Aug 13, 2010.

J. López-Bonilla, J. Yaljá Montiel-Pérez, On the Gandhi’s recurrence relation for colour partitions, Scientific Res. J. of Multidisciplinary 1, No. 1 (2021) 24-25.

J. López-Bonilla, A. Lucas-Bravo, O. Marin-Martínez, On the colour partitions p_r (n),Comput. Appl. Math. Sci. 6, No. 2 (2021) 35-37.

J. López-Bonilla, M. Morales-García, Sum of divisors function in terms of colour partitions, Studies in Nonlinear Sci. 7, No. 1 (2022) 4-5.

K. S. Kölbig, The complete Bell polynomials for certain arguments in terms of Stirling numbers of the first kind, J. Comput. Appl. Math. 51 (1994) 113-116.

W. P. Johnson, The curious history of Faä di Bruno’s formula, The Math. Assoc. of America 109 (2002) 217-234.

D. F. Connon, Various applications of the (exponential) complete Bell polynomials, http://arxiv.org/ftp/arkiv/papers/1001/1001.2835.pdf , 16 Jan 2010.

J. López-Bonilla, S. Vidal-Beltrán, A. Zúñiga-Segundo, Some applications of complete Bell polynomials, World Eng. & Appl. Sci. J. 9, No. 3 (2018) 89-92.

J. López-Bonilla, R. López-Vázquez, S. Vidal-Beltrán, Bell polynomials, Prespacetime J. 9, No. 5 (2018) 451-453.

J. López-Bonilla, S. Vidal-Beltrán, A. Zúñiga-Segundo, Characteristic equation of a matrix via Bell polynomials, Asia Mathematika 2, No. 2 (2018) 49-51.

https://en.wikipedia.org/wiki/Bell_polynomials#Definitions

S. Ramanujan, On certain arithmetical functions, Trans. Camb. Phil. Soc. 22, No. 9 (1916) 159-184.

http://oeis.org

D. H. Lehmer, Ramanujan’s functionτ(n), Duke Math. J. 10 (1943) 483-492.

B. Jordan, B. Kelly, The vanishing of the Ramanujan tau function, Preprint, 12 March (1999). http://mathworld.wolfram.com/TauFunction.html

D. Niebur, A formula for Ramanujan’s tau function, Illinois J. Math. 19, No. 3 (1975) 448-449.

http://en.wikipedia.org/wiki/Ramanujan_tau_function

T. M. Apostol, Modular functions and Dirichlet series in number theory, Springer-Verlag, New York (1997).

J. M. Gandhi, Congruences for p_r (n)and Ramanujan’s τ-function, Amer. Math. Monthly 70, No. 3 (1963) 265-274.

M. S. Devi* et al., “Linear Attribute Projection and Performance Assessment for Signifying the Absenteeism at Work using Machine Learning,” International Journal of Recent Technology and Engineering (IJRTE), vol. 8, no. 3. Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP, pp. 1262–1267, Sep. 30, 2019. doi: 10.35940/ijrte.c4405.098319. Available: http://dx.doi.org/10.35940/ijrte.C4405.098319

P. Venkatasubbu and M. Ganesh, “Used Cars Price Prediction using Supervised Learning Techniques,” International Journal of Engineering and Advanced Technology, vol. 9, no. 1s3. Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP, pp. 216–223, Dec. 31, 2019. doi: 10.35940/ijeat.a1042.1291s319. Available: http://dx.doi.org/10.35940/ijeat.A1042.1291S319

Dr. S. Bhubaneswari N T* and Dr. S. J, “A Research on the Factors that Impact the Effectiveness of Organizations in IT AND ITES in Coimbatore,” International Journal of Innovative Technology and Exploring Engineering, vol. 8, no. 11. Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP, pp. 1011–1013, Sep. 30, 2019. doi: 10.35940/ijitee.i8070.0981119. Available: http://dx.doi.org/10.35940/ijitee.I8070.0981119