On the Nörlund-Rice Integral Formula
Main Article Content
Abstract
After introducing the famous Nörlund-Rice integral formula, we apply it to Laguerre polynomials, Melzak’s relation, and Stirling numbers of the second kind to obtain nice expressions.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
N. E. Nörlund, Vorlesungen über differenzenrechnung, Chelsea (1954).
D. E. Knuth, The art of computer programming, vol. 3, Addison-Wesley, New York (1973).
P. Flajolet, R. Sedgewick, Mellin transforms and asymptotics: Finite differences and Rice’s integrals,
Theoret. Comput. Sci. 144, No. 1-2 (1995) 101-124.
P. Kirschenhofer, A note on alternating sums, Electron. J. Combin. 3, No. 2 (1996) Paper R7
P. Kirschenhofer, P. J. Larcombe, On a class of recursive-based binomial coefficient identities involving
harmonic numbers, Util. Math. 73 (2007) 105-115.
K. N. Boyadzhiev, Notes on the binomial transform, World Scientific, Singapore (2018).
Ch. Benjes, Properties of Stirling numbers of the second kind, Master Thesis, Naval Postgraduate School,
Monterey, Calif.-USA (1971).
J. Quaintance, H. W. Gould, Combinatorial identities for Stirling numbers, World Scientific, Singapore
(2016).
V. Barrera-Figueroa, J. López-Bonilla, R. López-Vázquez, On Stirling numbers of the second kind,
Prespacetime Journal 8, No. 5 (2017) 572-574.
E. N. Laguerre, Sur l’ intégrale ∫_x^(∞ )▒x^(-1) e^(-x) dx,Bull. Soc. Math. France 7 (1879) 72-81.
F. Pidduck, Laguerre polynomials in quantum mechanics, J. London Math. Soc. 4, No. 1 (1929)
-166.
C. Lanczos, Linear differential operators, SIAM, Philadelphia, USA (1996).
M. E. H. Ismail, Classical and quantum orthogonal polynomials in one variable, Cambridge University
Press (2005).
J. López-Bonilla, V. M. Salazar del Moral, R. López-Vázquez, On some identities for the Laguerre
polynomials, Prespacetime J. 8, No. 10 (2017) 1251-1254.
X. Pan, X. Guo, Some new identities involving Laguerre polynomials, AIMS Maths. 6, No. 11 (2021)
-12717.
16.Z. A. Melzak, Problem 4458, Amer. Math. Monthly 58, No. 9 (1951) 636.
U. Abel, H. W. Gould, J. Quaintance, New proofs of Melzak’s identity, arXiv: 1603.07006v1 [math. CO]
Mar (2016).
J. López-Bonilla, J. Yaljá Montiel-Pérez, S. Vidal-Beltrán, On the Melzak and Wilf identities, The J. of
Middle East & North Africa Sci. 3, No. 11 (2017) 1-3.
M. Gessel, On Miki’s identity for Bernoulli numbers, J. Number Theory 110, No. 1 (2005) 75-82.
Sivaraman, Dr. R., Núñez-Yépez, H. N., & López-Bonilla, Prof. J. (2023). Ramanujan’s Tau-Function in Terms of Bell Polynomials. In Indian Journal of Advanced Mathematics (Vol. 3, Issue 2, pp. 1–3). https://doi.org/10.54105/ijam.b1157.103223
Srimannarayana, N., Satyanarayana, B., & Ramesh, D. (2019). Some Integral Results Associated with Generalized Hypergeometric Function. In International Journal of Recent Technology and Engineering (IJRTE) (Vol. 8, Issue 2, pp. 1067–1071). https://doi.org/10.35940/ijrte.b1867.078219
Dassani, M., & Kushwaha, M. (2020). Generalization of Konhauser Polynomials. In International Journal of Basic Sciences and Applied Computing (Vol. 2, Issue 11, pp. 8–14). https://doi.org/10.35940/ijbsac.l0165.0321120