On the Nörlund-Rice Integral Formula

Main Article Content

Dr. R. Sivaraman
Muniru Iddrisu
Prof. J. López-Bonilla

Abstract

After introducing the famous Nörlund-Rice integral formula, we apply it to Laguerre polynomials, Melzak’s relation, and Stirling numbers of the second kind to obtain nice expressions.

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
Dr. R. Sivaraman, Muniru Iddrisu, and Prof. J. López-Bonilla , Trans., “On the Nörlund-Rice Integral Formula”, IJAM, vol. 4, no. 2, pp. 7–9, Apr. 2025, doi: 10.54105/ijam.B1175.04021024.
Section
Articles

How to Cite

[1]
Dr. R. Sivaraman, Muniru Iddrisu, and Prof. J. López-Bonilla , Trans., “On the Nörlund-Rice Integral Formula”, IJAM, vol. 4, no. 2, pp. 7–9, Apr. 2025, doi: 10.54105/ijam.B1175.04021024.

References

N. E. Nörlund, Vorlesungen über differenzenrechnung, Chelsea (1954).

D. E. Knuth, The art of computer programming, vol. 3, Addison-Wesley, New York (1973).

P. Flajolet, R. Sedgewick, Mellin transforms and asymptotics: Finite differences and Rice’s integrals,

Theoret. Comput. Sci. 144, No. 1-2 (1995) 101-124.

P. Kirschenhofer, A note on alternating sums, Electron. J. Combin. 3, No. 2 (1996) Paper R7

P. Kirschenhofer, P. J. Larcombe, On a class of recursive-based binomial coefficient identities involving

harmonic numbers, Util. Math. 73 (2007) 105-115.

K. N. Boyadzhiev, Notes on the binomial transform, World Scientific, Singapore (2018).

Ch. Benjes, Properties of Stirling numbers of the second kind, Master Thesis, Naval Postgraduate School,

Monterey, Calif.-USA (1971).

J. Quaintance, H. W. Gould, Combinatorial identities for Stirling numbers, World Scientific, Singapore

(2016).

V. Barrera-Figueroa, J. López-Bonilla, R. López-Vázquez, On Stirling numbers of the second kind,

Prespacetime Journal 8, No. 5 (2017) 572-574.

E. N. Laguerre, Sur l’ intégrale ∫_x^(∞ )▒x^(-1) e^(-x) dx,Bull. Soc. Math. France 7 (1879) 72-81.

F. Pidduck, Laguerre polynomials in quantum mechanics, J. London Math. Soc. 4, No. 1 (1929)

-166.

C. Lanczos, Linear differential operators, SIAM, Philadelphia, USA (1996).

M. E. H. Ismail, Classical and quantum orthogonal polynomials in one variable, Cambridge University

Press (2005).

J. López-Bonilla, V. M. Salazar del Moral, R. López-Vázquez, On some identities for the Laguerre

polynomials, Prespacetime J. 8, No. 10 (2017) 1251-1254.

X. Pan, X. Guo, Some new identities involving Laguerre polynomials, AIMS Maths. 6, No. 11 (2021)

-12717.

16.Z. A. Melzak, Problem 4458, Amer. Math. Monthly 58, No. 9 (1951) 636.

U. Abel, H. W. Gould, J. Quaintance, New proofs of Melzak’s identity, arXiv: 1603.07006v1 [math. CO]

Mar (2016).

J. López-Bonilla, J. Yaljá Montiel-Pérez, S. Vidal-Beltrán, On the Melzak and Wilf identities, The J. of

Middle East & North Africa Sci. 3, No. 11 (2017) 1-3.

M. Gessel, On Miki’s identity for Bernoulli numbers, J. Number Theory 110, No. 1 (2005) 75-82.

Sivaraman, Dr. R., Núñez-Yépez, H. N., & López-Bonilla, Prof. J. (2023). Ramanujan’s Tau-Function in Terms of Bell Polynomials. In Indian Journal of Advanced Mathematics (Vol. 3, Issue 2, pp. 1–3). https://doi.org/10.54105/ijam.b1157.103223

Srimannarayana, N., Satyanarayana, B., & Ramesh, D. (2019). Some Integral Results Associated with Generalized Hypergeometric Function. In International Journal of Recent Technology and Engineering (IJRTE) (Vol. 8, Issue 2, pp. 1067–1071). https://doi.org/10.35940/ijrte.b1867.078219

Dassani, M., & Kushwaha, M. (2020). Generalization of Konhauser Polynomials. In International Journal of Basic Sciences and Applied Computing (Vol. 2, Issue 11, pp. 8–14). https://doi.org/10.35940/ijbsac.l0165.0321120