Hardy-Littlewood-Type Theorem for Mixed Fractional Integrals in Hölder Spaces
Main Article Content
Abstract
We study mixed Riemann-Liouville fractional integration operators and mixed fractional derivative in Marchaud form of function of two variables in Hölder spaces of different orders in each variables. The obtained are results generalized to the case of Hölder spaces with power weight.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
H. G. Hardy and J.E. Littlewood, Some properties of fractional integrals. I. Math. Z. 27 (4), 1928, pp. 565–606.
N. K. Karapetiants and L.D. Shankishvili, A shot proof of Hardy- Littlewood – type theorem for fractional integrals in weighted Hölder spaces. Fract. Calc. Appl. Anal. vol 2 (2), 1999, pp. 117–192.
N. K. Karapetiants and L.D. Shankishivili, Fractional integro-differentiation of the complex order in generalized Hölder spaces H0([0,1],p) Integral Transforms Spec. Funct. vol. 13 (3), 2002, pp. 199–209.
T. Mamatov and S. Samko, Mixed fractional integration operators in mixed weighted Hölder spaces. Fract. Calc. Appl. Anal. vol. 13 (3) , 2010, pp. 245–259.
T. Mamatov, Mixed fractional integration operators in mixed weighted generalized Hölder spaces. Case Studies Journal, vol. 7 (6), 2018, pp. 61–68.
T. Mamatov, Weithed Zygmund estimates for Mixed fractional integration. Case Studies Journal, vol. 7 (5), 2018, pp. 82–88.
T. Mamatov, Mapping properties of mixed fractional differentiation operators in Hölder spaces defined by usual Hölder condition. Journal of Computer Science and Computational Mathematics, vol. 2 (9), 2019, pp. 29-34.
T. Mamatov, Composition of mixed Riemann-Liouville fractional integral and mixed fractional derivative. Journal of Global Research in Mathematical Archives, vol. 6 (11), 2019, pp. 23–32.
T. Mamatov, D. Rayimov and M. Elmurodov, Mixed Fractional Differentiation Operators in Hölder Spaces. Journal of Multidisciplinary Engineering Science and Technology (JMEST), vol. 6 (4), 2019, pp. 106-110
T. Mamatov, Fractional integration operators in mixed weighted generalized Hölder spaces of function of two variables defined by mixed modulus of continuity. “Journal of Mathematical Methods in Engineering” Auctores Publishing, vol. 1(1)-004, 2019, pp. 1-16
T. Mamatov, “Mixed fractional integration operators in mixed weighted Hölder spaces” (Monograph Online Sources), LAP LAMBERT Academic Publishing, Beau Bassin, 2018, p. 73.
T. Mamatov, Operator of Volterra convolution type in generalized Hölder spaces. Poincare Journal of Analysis & Applications, vol. 7 (2), 2020, pp. 275-288.
Kh. M. Murdaev and S. G. Samko, Weighted estimates of continuity modulus of fractional integrals of function having a prescribed continuity modulus with weight. Deponierted in VINITI, Moscow, 1986, 3351-B, pp. 42.
14. Kh. M. Murdaev and S.G. Samko, Mapping properties of fractional integro-differentation in weighted generalized Hölder spaces H (p) with the weight P(x)=(x-a)u (b-a)v
B.S. Rubin, Fractional integrals in Hölder spaces with weight and operators of potential type. Izv.Akad.Nauk Armyan.SSR Ser. Math. vol. 9(4), 1974, pp. 308-324.
S.G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivaties (Book style). Theory and Applications, Gordon and Breach.Sci.Publ. N.York-London, 1993, pp. 1012.
S.G. Samko and Z. Mussalaeva, Fractional type operators in weighted generalized Hölder spaces. Proc. Georgian Acad.Sci., Mathem. vol. 1(5), 1993, pp. 601–626.