Impacts of Some Definitions on Algebra of Differential Operators for Noncommutative Algebras

Main Article Content

Dr. SAMA Anzoumana
Sir Bénédic Kouamé Bah
Dr. Konan Mathias Kouakou

Abstract

Rings of differential operators are one of the most important noncommutative (associative) algebras. They play an important role in the representation theory of Lie algebras and the algebraic analysis of systems of partial differential equations. However, If A is a commutative and unitary algebra on a field k, Grothendieck defined the ring of differential operators on the algebra A, denoted by D(A), as follows: D(A):=∪Dⁿ(A), where D⁻¹(A)=0 and for n∈ℕ, (1) Dⁿ(A):={u∈ Endk(A):[u, a]=ua-au ∈ Dⁿ⁻¹(A),∀ a∈ A}. In this paper, we show that with this definition, the algebra of differential operators is no longer rich when it is a noncommutative algebra.

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
Dr. SAMA Anzoumana, Sir Bénédic Kouamé Bah, and Dr. Konan Mathias Kouakou , Trans., “Impacts of Some Definitions on Algebra of Differential Operators for Noncommutative Algebras”, IJAM, vol. 5, no. 1, pp. 1–4, Apr. 2025, doi: 10.54105/ijam.B1178.05010425.
Section
Articles

How to Cite

[1]
Dr. SAMA Anzoumana, Sir Bénédic Kouamé Bah, and Dr. Konan Mathias Kouakou , Trans., “Impacts of Some Definitions on Algebra of Differential Operators for Noncommutative Algebras”, IJAM, vol. 5, no. 1, pp. 1–4, Apr. 2025, doi: 10.54105/ijam.B1178.05010425.

References

Akman, Füsun, On some generalizations of Batalin-Vilkoovisky algebras, 1996, arXiv:q-alg/ 9506027 v3. http://doi.org10.48550/ARXIV.Q-ALG/9506027

Akman, Füsun, Chicken or egg? A hierarchy of homotopy algebras, Homology, homotopy and Applications 7 (2005), 5 - 39. https://doi.org/10.48550/arXiv.math/0306145. https://doi.org/10.4310/HHA.2005.v7.n2.a1

Akman, Füsun and Lucian M Ionescu, Higher derived brackets and deformation theory I, A https://doi.org/10.48550/arXiv.math/0504541

BOUCHAÏB EL BOUFI (1995) OPERATEURS DIFFERENTIELS SUR LES ALGEBRES NON REDUITES, COMMUNICATIONS IN ALGEBRA, 23:13 , 4887-4924, https://doi.org/10.1080/00927879508825507

Dixmier, J.; Sur les algèbres de Weyl, Bull. Soc. Math. France 96 (1968), 209-242. https://doi.org/10.24033/BSMF.1667

Doubek, Martin, On resolutions of diagrams of algebras, 2011, arXiv:1107.1408 v1 [math.AT].

https://doi.org/10.48550/arXiv.1107.1408

Grothendieck and J. Dieudonné, Eléments de géométrie algébrique IV (quatrième partie). Publications Mathematiques I.H.E.S., 32, 1967. https://eudml.org/doc/103873

Hazewinkel, Michiel, Left differential operators on noncommutative algebras, arXiv.1304.1070

https://doi.org/10.48550/arXiv.1304.1070

Jauffret, Colin. "Variétés de drapeaux et opérateurs différentiels." Thèse, (2009), 5-10. http://hdl.handle.net/1866/3467

J. T. STAFFORD, Endomorphisms of Right Ideals of The Weyl Algebra, Transactions of the American Mathematical Society Volume 299, Number 2, February 1987. https://doi.org/10.1090/s0002-9947-1987-0869225-3

Sama Anzoumana1 and Konan M. Kouakou, EQUALITY BETWEEN THE ALGEBRAS OF DIFFERENTIAL OPERATORS AND ENDOMORPHISMS IN FINITE DIMENSION Advances in Mathematics: Scientific Journal 13 (2024), no.3, 387–397 https://doi.org/10.37418/amsj.13.3.8

Rao, K. N. B., Srinivas, Dr. G., & D., Dr. P. R. P. V. G. (2019). A Heuristic Ranking of Different Characteristic Mining Based Mathematical Formulae Retrieval Models. In International Journal of Engineering and Advanced Technology (Vol. 9, Issue 1, pp. 893–901). https://doi.org/10.35940/ijeat.a9412.109119

Sitti Zuhaerah Thalhah, Mohammad Tohir, Phong Thanh Nguyen, K. Shankar, Robbi Rahim, Mathematical Issues in Data Science and Applications for Health care. (2019). In International Journal of Recent Technology and Engineering (Vol. 8, Issue 2S11, pp. 4153–4156). https://doi.org/10.35940/ijrte.b1599.0982s1119

SHALI, V. G. S., & ASHA, Dr. S. (2019). Double Arithmetic Odd Decomposition [DAOD] of Some Complete 4-Partite Graphs. In International Journal of Innovative Technology and Exploring Engineering (Vol. 2, Issue 9, pp. 3902–3907). https://doi.org/10.35940/ijitee.b7814.129219

Khadka, C. B. (2023). Transformation of Special Relativity into Differential Equation by Means of Power Series Method. In International Journal of Basic Sciences and Applied Computing (Vol. 10, Issue 1, pp. 10–15). https://doi.org/10.35940/ijbsac.b1045.0910123

Most read articles by the same author(s)

1 2 3 4 > >>