Subscription Inventive Over the S-Convex Set in Linear Space

Main Article Content

Neelam Dubey

Abstract

In the context of the present paper, our focus revolves around the exploration and analysis of S-convex sets, which represent a fascinating and novel extension of the classical concept of convex sets. We define S-convex sets and discus their main properties as well as the corresponding S-convex hull. Moreover, we clarify the concept of S-linear combinations, which are essential to our research. This first work lays the foundation for a thorough study of S-convex sets and their characteristics. A number of examples are included to show the necessity of the hypotheses of various theorems.

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
Neelam Dubey , Tran., “Subscription Inventive Over the S-Convex Set in Linear Space”, IJAM, vol. 5, no. 1, pp. 47–49, Apr. 2025, doi: 10.54105/ijam.B1201.05010425.
Section
Articles

How to Cite

[1]
Neelam Dubey , Tran., “Subscription Inventive Over the S-Convex Set in Linear Space”, IJAM, vol. 5, no. 1, pp. 47–49, Apr. 2025, doi: 10.54105/ijam.B1201.05010425.

References

Haimos, Paul R, “Finite dimensional vector spaces”, Springer Verlag, New York, 1955. https://archive.org/download/HalmosP.R.FiniteDimensionalVectorSpaces.SpringerVerlag205s/Halmos,%20P.%20R.%20Finite-dimensional%20vector%20spaces.%20(Springer-Verlag)(205s)_text.pdf

Harvarth John, “Topological vector spaces and distributions”, Dover Publication One, Mineole, New York, 1966. https://www.grafiati.com/en/literature-selections/linear-topological-vector-space/book/

Simmons, George Finlay, “Introduction to Topology and Modern Analysis”, McGraw-Hill, New York, 1963. https://www.mymathscloud.com/api/download/modules/University/Textbooks/topology/5)Introduction%20to%20Topology%20and%20Modern%20Analysis%20Simmons.pdf?id=48928275

Robertson, A.P. & Robertson W.J. “Topological vector spaces”, Cambridge University Paris, Cambridge New York. https://www.ams.org/books/gsm/205/

Charnbolle, A.: An algorithm for mean curvature free mound. 6 (2). 195-218 (2004). https://www.researchgate.net/publication/243119411_An_algorithm_for_Mean_Curvature_Motion

Finn, R : Equilibrium capillary surfaces Springer Verlag, 1986. https://books.google.co.in/books/about/Equilibrium_Capillary_Surfaces.html?id=cZ3vAAAAMAAJ&redir_esc=y

Schneider, R.: Convex Bodies: The Brunn – Minkowski Theory. Encyclopedia of mathematics and its applications, 44, Cambridge University press, 1993. DOI: https://doi.org/10.1017/CBO9780511526282

Ziemer, W.P.: weakly differentiable functions Springer Verlag, Ann Harboor, 1989. DOI: https://doi.org/10.1007/978-1-4612-1015-3

Andreu, Caselles, V.,Mazon, JM.:A parabolic quasilinear problem for or linear growth functional, Rev. Mat. Iberoamericana 18, 135-185 (2002). https://www.uv.es/mazon/trabajos/ACM-Ibero.pdf

Bellettini, G., Caselles, V., Novaga, M.: The total variation flow in IR.J, differential equations 184, 475-525 (2002). https://cvgmt.sns.it/paper/1083/

Bellettini,G., Caselles, V., Novaga, M.: Explicit solutions of the eigenvalue problem – div (du¦du)= u shyam J. Mathematical analysis 2005. https://www.research.unipd.it/bitstream/11577/118781/1/BCN05.pdf

Bellettini, G., Novaga, paolini, M.: Characterization of facet – braking for non smooth mean curvature flow in the convex case. Interfaces free bound. 3, 415-446 (2001). https://ems.press/journals/ifb/articles/61

Rosales, C.: Isoperimetric regions in rationally symmetric convex bodies. Indiana University math, J. 52, 1201-1214 (2003_. https://www.ugr.es/~crosales/papers/isop_convex.pdf

Most read articles by the same author(s)

1 2 3 4 > >>