Study of Solution as Locally Asymptotic Attractivity for Nonlinear Functional Integral Equation
Main Article Content
Abstract
In this paper we proved an existence result for local asymptotic attractivity of the solution for a nonlinear functional integral equation under certain condition which gives the existence as well as existence of the asymptotic stability of solutions. An example is providing for indicating the natural realizations of abstract theory presented in the paper.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
M. A. Krasnoselskii,(1964) Topological Methods in Theory of nonlinear integral equations, Pergamon Press, New York.1.DOI: https://doi.org/10.1002/zamm.19640441041
M. va ̈th,(2000) Volterra and integral equations of vector functions, PAM, Marcel dekker, New York.2. https://books.google.co.in/books/about/Volterra_and_Integral_Equations_of_Vecto.html?id=-4iKdrbUQDQC&redir_esc=y
J. Banas and B.C.Dhage,(2007) Global asymptotic stability of solutions of a functional integral equation, Nonlinear Analysis.3. DOI: https://doi.org/10.1016/j.na.2007.07.038
B. C. Dhage, (2004) A fixed point theorem in Banach algebras with application to functional integral equations, Kyungpook Math.J. Vol.44, pp.145-155.4. DOI: https://doi.org/10.1016/j.aml.2003.10.014
L. A. Lusternik and v. J. Sobolev, ( 1985) Elements of functional analysis, Hindusthan Publishing Corpn, India.5. https://shodhgangotri.inflibnet.ac.in/bitstream/20.500.14146/6765/1/01_synopsis.pdf
B. C. Dhage, (2006) Nonlinear functional boundary value problems involving Carathe ́odory, Kyungpook Math. J. Vol.46, pp. 427-441.6. https://kmj.knu.ac.kr/journal/download_pdf.php?spage=527&volume=46&number=4
T. A. Burton, (1983) Volterra integral and differential equations,Academic Press, New York. 7. https://www.scirp.org/reference/referencespapers?referenceid=1259943
S. N. Salunkhe, M. G. Timol, (2010) Existence theorem for first order ordinary functional differential equation with periodic boundary conditions, Gen. Math. Notes Vol. Issue-2, pp. 185-194. https://www.emis.de/journals/GMN/yahoo_site_admin/assets/docs/20_Existence_Theorem_for_First_Order_OrdinarySNSalunkhe.31224511.pdf
Salunkhe S. N., Timol M. G., (2011) Continuity and compactness results for differential operators in Banach space,Int. eJ. Math. Engi. Vol. 127, pp. 1155-1160. https://www.ijmttjournal.org/archive/ijmtt-v67i6p513
Shantaram Narayan Salunkhe, (2021) Asymptotic attractivity result for neutral functional differential equation, Int. J. Math. Trends and Technology, Vol.67, Issue- 3, pp. 13-20. DOI: https://doi.org/10.14445/22315373/IJMTT-V67I3P503
Ahmad, Dr. N., & Singh, B. (2021). Numerical Solution of Integral Equation by using New Modified Adomian Decomposition Method and Newton Raphson Methods. In International Journal of Innovative Technology and Exploring Engineering (Vol. 10, Issue 8, pp. 5–11). DOI: https://doi.org/10.35940/ijitee.h9069.0610821
Prachi Jain, Vandana Jat. (2021). Solution of Integral Equations Involving Bessel Maitland Functions using Fractional Integral Operators. Indian Journal of Advanced Mathematics (IJAM). (Vol. 1, Issue 1, pp. 1–7). https://www.ijam.latticescipub.com/wp-content/uploads/papers/v1i1/A1108101221.pdf